Share

Publications

2015

  • Highly vibrationally excited O<SUB>2</SUB> molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy
    • Foucher Mickaël
    • Marinov Daniil
    • Carbone Emile
    • Chabert Pascal
    • Booth Jean-Paul
    Plasma Sources Science and Technology, IOP Publishing, 2015, 24 (4), pp.042001. Inductively-coupled plasmas in pure O 2 (at pressures of 5?80?mTorr and radiofrequency power up to 500?W) were studied by optical absorption spectroscopy over the spectral range 200?450?nm, showing the presence of highly vibrationally excited O 2 molecules (up to v? = 18) by Schumann?Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000?K, but these hot molecules only represent a fraction of the total O 2 density. By analysing the (11-0) band at higher spectral resolution the O 2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900?K at 80?mTorr 500?W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2???×???10 ?5 across a spectral range of 250?nm. (10.1088/0963-0252/24/4/042001)
    DOI : 10.1088/0963-0252/24/4/042001
  • TALIF measurements of oxygen atom density in the afterglow of a capillary nanosecond discharge
    • Klochko A.V.
    • Lemainque J.
    • Booth Jean-Paul
    • Starikovskaia Svetlana
    Plasma Sources Science and Technology, IOP Publishing, 2015, 24 (2), pp.025010. The atomic oxygen density has been measured in the afterglow of a capillary nanosecond discharge in 2430 mbar synthetic air (N 2 &#8201;:&#8201;O 2 = 4&#8201;:&#8201;1) by the two-photon absorption laser-induced fluorescence (TALIF) technique, combined with absolute calibration by comparison with xenon TALIF. The discharge was initiated by a train of 30 ns FWHM pulses of alternating positivenegativepositive polarity, separated by 250 ns, with a train repetition frequency of 10 Hz. The amplitude of the first pulse was 10 kV in the cable. A flow of synthetic air through the tube provided complete gas renewal between pulse trains. The O-atom density measurements were made over the time interval200 ns2 µ s after the initial pulse. The gas temperature was determined by analysis of the molecular nitrogen second positive system optical emission spectrum. The influence of the gas temperature on the atom density measurements, and the reactions producing O atoms, are discussed. (10.1088/0963-0252/24/2/025010)
    DOI : 10.1088/0963-0252/24/2/025010
  • Experimental determination of the dispersion relation of magnetosonic waves
    • Balikhin M. A.
    • Shklyar D. R.
    • Yearby K. H.
    • Canu Patrick
    • Carr C. M.
    • Dandouras I.
    • Walker S. N.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2015, 120, pp.9632-9650. Magnetosonic waves are commonly observed in the vicinity of the terrestrial magnetic equator. It has been proposed that within this region they may interact with radiation belt electrons, accelerating some to high energies. These wave-particle interactions depend upon the characteristic properties of the wave mode. Hence, determination of the wave properties is a fundamental part of understanding these interaction processes. Using data collected during the Cluster Inner Magnetosphere Campaign, this paper identifies an occurrence of magnetosonic waves, discusses their generation and propagation properties from a theoretical perspective, and utilizes multispacecraft measurements to experimentally determine their dispersion relation. Their experimental dispersion is found to be in accordance with that based on cold plasma theory. (10.1002/2015JA021746)
    DOI : 10.1002/2015JA021746
  • Weak magnetohydrodynamic turbulence and intermittency
    • Meyrand Romain
    • Kiyani K. H.
    • Galtier Sébastien
    Journal of Fluid Mechanics, Cambridge University Press (CUP), 2015, 770. Three-dimensional numerical simulation is used to investigate intermittency in incompressible weak magnetohydrodynamic turbulence with a strong uniform magnetic field and zero cross-helicity. At leading order, this asymptotic regime is achieved via three-wave resonant interactions with the scattering of a wave on a 2D mode for which . When the interactions with the 2D modes are artificially reduced, we show numerically that the system exhibits an energy spectrum with , whereas the expected exact solution with is recovered with the full nonlinear system. In the latter case, strong intermittency is found when the vector separation of structure functions is taken transverse to . This result may be explained by the influence of the 2D modes whose regime belongs to strong turbulence. In addition to shedding light on the origin of this intermittency, we derive a log-Poisson law, , which fits the data perfectly and highlights the important role of parallel current sheets. (10.1017/jfm.2015.141)
    DOI : 10.1017/jfm.2015.141
  • Multipoint observations of plasma phenomena made in space by Cluster
    • Goldstein M. L.
    • Escoubet P.
    • Hwang K.-J.
    • Wendel D. E.
    • Viñas A.-F.
    • Fung S. F.
    • Perri S.
    • Servidio S.
    • Pickett J. S.
    • Parks G. K.
    • Sahraoui Fouad
    • Gurgiolo C.
    • Matthaeus W.
    • Weygand J. M.
    Journal of Plasma Physics, Cambridge University Press (CUP), 2015, 81 (3), pp.325810301. Plasmas are ubiquitous in nature, surround our local geospace environment, and permeate the universe. Plasma phenomena in space give rise to energetic particles, the aurora, solar flares and coronal mass ejections, as well as many energetic phenomena in interstellar space. Although plasmas can be studied in laboratory settings, it is often difficult, if not impossible, to replicate the conditions (density, temperature, magnetic and electric fields, etc.) of space. Single-point space missions too numerous to list have described many properties of near-Earth and heliospheric plasmas as measured both in situ and remotely (see http://www.nasa.gov/missions/#.U1mcVmeweRY for a list of NASA-related missions). However, a full description of our plasma environment requires three-dimensional spatial measurements. Cluster is the first, and until data begin flowing from the Magnetospheric Multiscale Mission (MMS), the only mission designed to describe the three-dimensional spatial structure of plasma phenomena in geospace. In this paper, we concentrate on some of the many plasma phenomena that have been studied using data from Cluster. To date, there have been more than 2000 refereed papers published using Cluster data but in this paper we will, of necessity, refer to only a small fraction of the published work. We have focused on a few basic plasma phenomena, but, for example, have not dealt with most of the vast body of work describing dynamical phenomena in Earth's magnetosphere, including the dynamics of current sheets in Earth's magnetotail and the morphology of the dayside high latitude cusp. Several review articles and special publications are available that describe aspects of that research in detail and interested readers are referred to them (see for example, Escoubet et al. 2005Multiscale Coupling of Sun-Earth Processes, p. 459, Keith et al. 2005Sur. Geophys.26, 307339, Paschmann et al. 2005Outer Magnetospheric Boundaries: Cluster Results, Space Sciences Series of ISSI. Berlin: Springer, Goldstein et al. 2006Adv. Space Res.38, 2136, Taylor et al. 2010The Cluster Mission: Space Plasma in Three Dimensions, Springer, pp. 309330 and Escoubet et al. 2013Ann. Geophys.31, 10451059). (10.1017/S0022377815000185)
    DOI : 10.1017/S0022377815000185
  • Chorus intensity modulation driven by time-varying field-aligned low-energy plasma
    • Nishimura Y.
    • Bortnik J.
    • Li W.
    • Liang Jun
    • Thorne R. M.
    • Angelopoulos V.
    • Le Contel Olivier
    • Auster U.
    • Bonnell J. W.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2015, 120 (9), pp.7433-7446. Recent studies have shown that chorus waves are responsible for scattering and precipitating the energetic electrons that drive the pulsating aurora. While some of the chorus intensity modulation events are correlated with <~100 eV electron density modulation, most of the chorus intensity modulation events in the postmidnight sector occur without apparent density changes. Although it is generally difficult to measure evolution of low-energy (<~20 eV) electron fluxes due to constraints imposed by the spacecraft potential and electrostatic analyzer (ESA) energy range limit, we identified using Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite data that low-energy ions of ~100 eV show density modulation that is correlated with chorus intensity modulation. Those low-energy ions and electrons are field-aligned with major peaks in 0° (for northern hemisphere winter event) and 180° (for northern hemisphere summer event) pitch angle, indicating that outflowing plasma from the sunlit hemisphere is the source of the low-energy plasma density modulation near the equator. Plasma sheet plasma density, and ambient electric and magnetic fields do not show modulations that are correlated with the chorus intensity modulation. Assuming charge neutrality, the low-energy ions can be used to represent cold plasma density in wave growth rate calculations, and the enhancements of the low-energy plasma density are found to contribute most effectively to chorus linear growth rates. These results suggest that chorus intensity modulation is driven by a feedback process where outflowing plasma due to energetic electron precipitation increases the equatorial density that drives further electron precipitation. (10.1002/2015JA021330)
    DOI : 10.1002/2015JA021330
  • Gas temperature measurements in oxygen plasmas by high-resolution Two-Photon Absorption Laser-induced Fluorescence
    • Booth Jean-Paul
    • Marinov Daniil
    • Foucher Mickaël
    • Guaitella Olivier
    • Bresteau D.
    • Cabaret Louis
    • Drag Cyril
    Journal of Instrumentation, IOP Publishing, 2015, 10 (11), pp.C11003. One of the most important, and difficult to measure, parameters of laboratory discharges in molecular gases is the gas translational temperature. We propose a novel technique to measure directly, with excellent spatial and temporal resolution, the velocity distribution of ground-state atoms (oxygen atoms in this case) in plasmas from the Doppler broadening of their laser excitation spectra. The method is based on the well-known Two-Photon Laser-induced Fluorescence (TALIF) technique, but uses a specially-built pulsed tunable ultraviolet laser with very narrow bandwidth which allows the Doppler profiles to be measured with high precision. This laser consists of a pulsed Nd:YAG-pumped Ti:Sapphire ring cavity which is injection-seeded by a single-mode cw Ti:sapphire laser. The single-mode infrared output pulses are frequency quadrupled by two non-linear crystals to reach the necessary UV wavelength (226 nm, 0.2 mJ) for TALIF excitation. This technique should be applicable to a wide range of discharges, ranging from low-pressure RF plasmas for surface processing to atmospheric pressure plasmas. Results of preliminary tests on low-pressure O 2 DC discharges are presented. (10.1088/1748-0221/10/11/C11003)
    DOI : 10.1088/1748-0221/10/11/C11003
  • Investigation of drift velocity effects on the EDGE and SOL transport
    • Leybros R.
    • Bufferand Hugo
    • Ciraolo Guido
    • Fedorczak Nicolas
    • Ghendrih Philippe
    • Hennequin Pascale
    • Marandet Yannick
    • Serre Eric
    • Schwander Frédéric
    • Tamain Patrick
    Journal of Nuclear Materials, Elsevier, 2015, 463, pp.489-492. To understand the mechanisms behind poloidal asymmetries of the transport in the edge and SOL plasma, it is important to take into account drift velocity in the transport model. We investigate the effects of an imposed radial electric field on the plasma equilibrium in the transport code SOLEDGE2D. In the edge, we show an important modification of the flow pattern due to poloidal E × B drift velocity. The drift velocity generates asymmetry of the density through the Pfirsch–Schluter flows which creates an important parallel rotation through the viscous balance. In comparison to heat load imbalance studies in the SOL of divertor tokamak, a strong link between the amplitude of the radial electric field and the heat load imbalance in the SOL of limiter tokamak has been highlighted using different amplitude of the imposed radial electric field. (10.1016/j.jnucmat.2014.10.079)
    DOI : 10.1016/j.jnucmat.2014.10.079
  • Wave-number spectrum of dissipative drift waves and a transition scale
    • Ghantous K.
    • Gürcan Özgür D.
    Physical Review E, American Physical Society (APS), 2015, 92 (3), pp.033107. We study the steady state spectrum of the Hasegawa-Wakatani (HW) equations that describe drift wave turbulence. Beyond a critical scale kc, which appears as a balance between the nonlinear time and the parallel conduction time, the adiabatic electron response breaks down nonlinearly and an internal energy density spectrum of the form F(k&#8869;)&#8733;k&#8722;3&#8869;, associated with the background gradient, is established. More generally a dual power law spectrum, approximately of the form F(k&#8869;)&#8733;k&#8722;3&#8869;(k&#8722;2c k&#8722;2&#8869;) is obtained, which captures this transition. Using dimensional analysis, an expression of the form kc&#8733;C/&#954; is derived for the transition scale, where C and &#954; are normalized parameters of the HW equations signifying the electron adiabaticity and the density gradient, respectively. The results are numerically confirmed using a shell model developed and used for the Hasegawa-Wakatani system. (10.1103/PhysRevE.92.033107)
    DOI : 10.1103/PhysRevE.92.033107
  • Magnetic Reconnection in Different Environments
    • Jackman C. M.
    • Delamere Peter A.
    • Hesse Michael
    • Aunai N.
    • Kuznetsova M. M.
    • Zenitani Seiji
    • Birn Joachim
    , 2015, 207, pp.259-267. This chapter addresses two important aspects of magnetic reconnection: time-dependent rates affected by island formation and the preferred direction of the reconnection line if merging magnetic field components are not anti-parallel. While it is widely known that magnetic reconnection facilitates mass, momentum, and energy transport in plasmas, it is illustrative to consider an analytical approach to describing the efficacy of reconnection as a transport mechanism. The chapter performs a detailed analysis of the correlation between diffusion region dimensions and reconnection rate. For this purpose, it employs open boundary condition calculations of a continuously driven reconnecting system. In summary, results indicate that the magnetic reconnection line in asymmetric systems is preferentially oriented in such a way that it bisects the direction of the asymptotic magnetic field direction on both inflow sides. This orientation is identical to the one for which the product of available magnetic energy is maximized.
  • Proof-of-concept demonstration of the PEGASES plasma thruster
    • Lafleur Trevor
    • Rafalskyi D.V.
    • Chabert Pascal
    • Aanesland Ane
    International Electric Propulsion Conference, 2015, pp.IEPC-2015-114/ISTS-2015-b-114. Here we experimentally demonstrate the working principle of a gridded plasma thrusterthat alternatively extracts and accelerates both positive and negative ions to generate thrust. The plasma is created in an inductively coupled plasma source, and negativeion formation is enhanced by cooling electrons using a magnetic filter, which creates an almost electron-free plasma region near the source exit. By then applying square voltage waveforms with frequencies between 20-950kHz, positive and negative ions are extractedand accelerated to high energies (100?s of eV). Downstream measurements show that at sufficiently large frequencies the ion beams can be well neutralized. The behaviour of the measured ion current with frequency is explained with an analytical model which extends the Child-Langmuir law to AC ion acceleration.
  • Properties of Jupiter's Magnetospheric Turbulence Observed by the Galileo Spacecraft
    • Tao Chihiro
    • Sahraoui Fouad
    • Fontaine Dominique
    • de Patoul Judith
    • Chust Thomas
    • Kasahara S.
    • Retinò Alessandro
    , 2015.
  • Advanced Ion Mass Spectrometer
    • Sittler E.C.
    • Cooper J.F.
    • Paschalidis N.
    • Jones S.
    • Rodriguez M.
    • Ali A.
    • Coplan M.A.
    • Chornay D.
    • Sturners S.J.
    • Brown S.
    • Bateman F.B.
    • Fontaine Dominique
    • Verdeil Christophe
    • André N.
    • Federov A.
    • Wurz Peter
    , 2015.
  • 3-D PIC Numerical Investigations of a Novel Concept of Multistage Axial Vircator for Enhanced Microwave Generation
    • Champeaux Stéphanie
    • Gouard Philippe
    • Cousin Richard
    • Larour Jean
    IEEE Transactions on Plasma Science, Institute of Electrical and Electronics Engineers, 2015, 43 (11), pp.3841-3855. The enhancement of power conversion efficiency of a classical axial VIRtual CAthode oscillaTOR (vircator) by introducing one or more reflectors beyond the anode in the cylindrical waveguide is numerically investigated. The targeted microwave (MW) output frequency lies in the S-band at around 3 GHz for an operation in TM01 mode. Powered by a 511-kV voltage signal for a duration of 45 ns, the design under consideration operates with an injected electron beam of mean voltage and mean current of around 508 kV and 19 kA, respectively. Full-wave 3-D modeling is performed using well-tested electromagnetic particle-in-cell codes such as Computer Simulation Technology Particle Studio and Magic. Simple rules for designing and installing the reflectors are given. The number of reflectors required to maximize the efficiency is discussed. The power conversion efficiency is shown to be improved over a classical axial vircator design by a factor of 12.8. A maximum mean output power of about 1.26 GW is delivered off-axis in the S-band at around 3 GHz, with an efficiency of nearly 13%. Besides, it is also shown that increasing the number of reflectors allows switching the operation mode from TM01 to TE11 along with a shift of MWfrequency from the S- to the L-band. A five- or six-reflector configuration is predicted to generate MW at both 2.86 and 1.4 GHz with conversion efficiencies ranging from 3.5% to 6.6%. A vircator including seven reflectors is expected to operate in TE11 mode at 1.4 GHz with an efficiency of about 8%. (10.1109/TPS.2015.2477561)
    DOI : 10.1109/TPS.2015.2477561
  • Zonal flows and pattern formation
    • Gürcan Özgür D.
    • Diamond P.H.
    Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2015, 48 (29), pp.293001. The general aspects of zonal flow physics, their formation, damping and interplay with quasi two dimensional turbulence are explained in the context of magnetized plasmas and quasi-geostrophic fluids with an emphasis on formation and selection of spatial patterns. General features of zonal flows as they appear in planetary atmospheres, rotating convection experiments and fusion plasmas are reviewed. Detailed mechanisms for excitation and damping of zonal flows, and their effect on turbulence via shear decorrelation is discussed. Recent results on nonlocality and staircase formation are outlined. (10.1088/1751-8113/48/29/293001)
    DOI : 10.1088/1751-8113/48/29/293001
  • The science program of the TCV tokamak: exploring fusion reactor and power plant concepts
    • Coda S.
    • Tcv Team
    Nuclear Fusion, IOP Publishing, 2015, 55 (10), pp.104004. TCV is acquiring a new 1 MW neutral beam and 2 MW additional third-harmonic electron cyclotron resonance heating (ECRH) to expand its operational range. Its existing shaping and ECRH launching versatility was amply exploited in an eclectic 2013 campaign. A new sub-ms real-time equilibrium reconstruction code was used in ECRH control of NTMs and in a prototype shape controller. The detection of visible light from the plasma boundary was also successfully used in a position-control algorithm. A new bang-bang controller improved stability against vertical displacements. The RAPTOR real-time transport simulator was employed to control the current density profile using electron cyclotron current drive. Shot-by-shot internal inductance optimization was demonstrated by iterative learning control of the current reference trace. Systematic studies of suprathermal electrons and ions in the presence of ECRH were performed. The L?H threshold power was measured to be ?50?75% higher in both H and He than D, to increase with the length of the outer separatrix, and to be independent of the current ramp rate. Core turbulence was found to decrease from positive to negative edge triangularity deep into the core. The geodesic acoustic mode was studied with multiple diagnostics, and its axisymmetry was confirmed by a full toroidal mapping of its magnetic component. A new theory predicting a toroidal rotation component at the plasma edge, driven by inhomogeneous transport and geodesic curvature, was tested successfully. A new high-confinement mode (IN-mode) was found with an edge barrier in density but not in temperature. The edge gradients were found to govern the scaling of confinement with current, power, density and triangularity. The dynamical interplay of confinement and magnetohydrodynamic modes leading to the density limit in TCV was documented. The heat flux profile decay lengths and heat load profile on the wall were documented in limited plasmas. In the snowflake (SF) divertor configuration the heat flux profiles were documented on all four strike points. SF simulations with the EMC3-EIRENE code, including the physics of the secondary separatrix, underestimate the flux to the secondary strike points, possibly resulting from steady-state E × B drifts. With neon injection, radiation in a SF was 15% higher than in a conventional divertor. The novel triple-null and X-divertor configurations were also achieved in TCV. (10.1088/0029-5515/55/10/104004)
    DOI : 10.1088/0029-5515/55/10/104004
  • Nanosecond barrier discharge in a krypton /helium mixture containing mercury dibromide: Optical emission and plasma parameters
    • Malinina A. A.
    • Starikovskaia Svetlana
    • Malinin A. N.
    Optics and Spectroscopy, MAIK Nauka/Interperiodica, 2015, 118 (1), pp.26-36. Spectral and electrical characteristics of atmospheric-pressure nanosecond barrier discharge plasma in a HgBr2/Kr/He mixture have been investigated. The discharge was initiated by positive 10-kV voltage pulses with a rise time of 4 ns and a half-amplitude duration of 28 ns. Emission from exciplex HgBr (B2&#931;12/ &#8722; X2&#931;12/ ) and KrBr (B2&#931;12/ &#8722; X2&#931;12/ , C3/2&#8722;A&#928;1/2, D1/2&#8722;A&#928;1/2) molecules have been studied. From the time evolution of the B-X transition spectra of the HgBr molecule (502 nm) and KrBr molecule (207 nm), a mechanism of the formation of the exciplex molecules in the nanosecond discharge has been deduced. The distributions of the energies and rates of the processes responsible for emission from HgBr and KrBr molecules have been analyzed by numerically solving the Boltzmann equation for the electron distribution function. Experiments have confirmed the possibility of optimizing the voltage supply pulse for maximizing the efficiency of simultaneous emission in the UV and visible (green) spectral ranges from atmospheric-pressure discharge in the HgBr2/Kr/He mixture. (10.1134/S0030400X14120157)
    DOI : 10.1134/S0030400X14120157
  • Plasma Sources in Planetary Magnetospheres: Mercury
    • Raines J. M.
    • Dibraccio G. A.
    • Cassidy T. A.
    • Delcourt Dominique C.
    • Fujimoto M.
    • Jia X.
    • Mangano V.
    • Milillo A.
    • Sarantos M.
    • Slavin J. A.
    • Wurz Peter
    Space Science Reviews, Springer Verlag, 2015, 192, pp.91-144. Not Available (10.1007/s11214-015-0193-4)
    DOI : 10.1007/s11214-015-0193-4
  • Magnetopause orientation: Comparison between generic residue analysis and BV method,
    • Dorville Nicolas
    • Haaland S.
    • Anekallu C.
    • Belmont Gérard
    • Rezeau Laurence
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2015 (120). Determining the direction normal to the magnetopause layer is a key step for any study of this boundary. Various techniques have been developed for this purpose. We focus here on generic residue analysis (GRA) methods, which are based on conservation laws, and the new iterative BV method, where B represents the magnetic field and V refers to the ion velocity. This method relies on a fit of the magnetic field hodogram against a modeled geometrical shape and on the way this hodogram is described in time. These two methods have different underlying model assumptions and validity ranges. We compare here magnetopause normals predicted by BV and GRA methods to better understand the sensitivity of each method on small departures from its own physical hypotheses. This comparison is carried out first on artificial data with magnetopause-like noise. Then a statistical study is carried out using a list of 149 flank and dayside magnetopause crossings from Cluster data where the BV method is applicable, i.e., where the magnetopause involves a single-layer current sheet, with a crudely C-shaped magnetic hodogram. These two comparisons validate the quality of the BV method for all these cases where it is applicable. The method provides quite reliable normal directions in all these cases, even when the boundary is moving with a varying velocity, which distorts noticeably the results of most of the other methods. (10.1002/2014JA020806)
    DOI : 10.1002/2014JA020806
  • Formation of self-organized shear structures in thin current sheets
    • Malova H. V.
    • Mingalev O. V.
    • Grigorenko E. E.
    • Mingalev I. V.
    • Melnik M. N.
    • Popov V. Y.
    • Delcourt Dominique C.
    • Petrukovich A. A.
    • Shen C.
    • Rong Z. J.
    • Zelenyi L. M.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2015, 120, pp.4802-4824. Self-consistent kinetic (particle-in-cell) model of magnetotail thin current sheet (TCS) is used to understand the formation of self-consistent sheared magnetic structures. It is shown that shear configurations appear in TCS as a result of self-consistent evolution of some initial magnetic perturbation at the current sheet center. Two general shapes of shear TCS components are found as a function of the transverse coordinate: symmetric and antisymmetric. We show that TCS formation goes together with the emergence of field-aligned currents in the center of the current sheet, as a result of north-south asymmetry of quasi-adiabatic ion motions. Ion drift currents can also contribute to the magnetic shear evolution, but their role is much less significant, their contribution depending upon the normal component B<SUB>z</SUB> and the amplitude of the initial perturbation in TCS. Parametric maps illustrating different types of TCS equilibria are presented that show a higher probability of formation of symmetric shear TCS configuration at lower values of the normal magnetic component. (10.1002/2014JA020974)
    DOI : 10.1002/2014JA020974
  • Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra
    • Badman Sarah V.
    • Branduardi-Raymont Graziella
    • Galand Marina
    • Hess Sebastien
    • Krupp Norbert
    • Lamy Laurent
    • Melin Henrik
    • Tao Chihiro
    Space Science Reviews, Springer Verlag, 2015, 187 (1-4), pp.99-179. The ionospheric response to auroral precipitation at the giant planets is reviewed, using models and observations. The emission processes for aurorae at radio, infrared, visible, ultraviolet, and X-ray wavelengths are described, and exemplified using ground- and space-based observations. Comparisons between the emissions at different wavelengths are made, where possible, and interpreted in terms of precipitating particle characteristics or atmospheric conditions. Finally, the spatial distributions and dynamics of the various components of the aurorae (moon footprints, low-latitude, main oval, polar) are related to magnetospheric processes and boundaries, using theory, in situ, and remote observations, with the aim of distinguishing between those related to internally-driven dynamics, and those related to the solar wind interaction. (10.1007/s11214-014-0042-x)
    DOI : 10.1007/s11214-014-0042-x
  • TEC variations along an East Euro-African chain during 5th april 2010 geomagnetic storm
    • Shimeis Amira
    • Borries Claudia
    • Amory-Mazaudier Christine
    • Fleury Rolland
    • Mahrous Ayman Mohamed
    • Hassan A.F.
    • Nawar Samir
    Advances in Space Research, Elsevier, 2015, 55 (9), pp.2239-2247. In this paper, we analyzed the variations of TEC along a latitudinal East Euro-African chain, during the storm of April 5, 2010. We observed a large asymmetry between the two hemispheres. We detected the presence of a TID in the Northern hemisphere on April 5. The propagation time of the TID from high to low latitudes and the speed of the TID was determined. On April 5, 6 and 7, we observed a decrease of the TEC and changes of the NO+ in the Northern hemisphere. This depletion is caused by the large-scale thermospheric wind disturbances due to Joule heating dissipation in the auroral zone. (10.1016/j.asr.2015.01.005)
    DOI : 10.1016/j.asr.2015.01.005
  • Energy balance in surface nanosecond dielectric barrier discharge. Plasma-assisted ignition of heavy hydrocarbons at high pressures
    • Shcherbanev S.A.
    • Stepanyan S.A.
    • Boumehdi Mohamed
    • Vanhove Guillaume
    • Desgroux Pascale
    • Starikovskaia Svetlana
    , 2015, 29 (9), pp.6118 - 6125. The paper presents experimental study of nanosecond surface dielectric barrier discharge (nSDBD) in air and application of nSDBD for initiation of the two-stage ignition of n-heptane in mixture with air. The emission spectroscopy study of rotational and vibra-tional structure of 2 + system of N2 molecules has been performed for a classical air flow control SDBD configuration. The energy deposition into the discharge has been measured. Strongly non-equilibrium distribution of rotational population is observed in the spectra at the leading and trailing edges of the high-voltage pulse. The time resolved spatial distribution of the rotational temperature along the dielectric surface has been measured. The second part of the paper concerns the ignition of stoichiometric mixture of C7H16/O2/N2 with nanosecond SDBD in Rapid Compression Machine (RCM). Different regimes of ignition initiated by discharge are discussed, including cool flame and fast ignition. (10.2514/6.2015-0668)
    DOI : 10.2514/6.2015-0668
  • Investigation of the Chirikov resonance overlap criteria for equatorial magnetosonic waves
    • Walker S. N.
    • Balikhin M. A.
    • Canu Patrick
    • Cornilleau-Wehrlin Nicole
    • Moiseenko I.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2015, 120, pp.8774-8781. Observations of equatorial magnetosonic waves made during the Cluster Inner Magnetospheric Campaign clearly show discrete spectra consisting of emissions around harmonics of the proton gyrofrequency. Equatorial magnetosonic waves are important because of their ability to efficiently scatter electrons in energy and pitch angle. This wave-particle interaction is numerically modeled through the use of diffusion coefficients, calculated based on a continuous spectrum such as that observed by spectrum analyzers. Using the Chirikov overlap resonance criterion, the calculation of the diffusion coefficient will be assessed to determine whether they should be calculated based on the discrete spectral features as opposed to a continuous spectrum. For the period studied, it is determined that the discrete nature of the waves does fulfill the Chirikov overlap criterion and so the use of quasi-linear theory with the assumption of a continuous frequency spectrum is valid for the calculation of diffusion coefficients. (10.1002/2015JA021718)
    DOI : 10.1002/2015JA021718
  • Phase imaging microscopy for the diagnostics of plasma-cell interaction
    • Ohene Yolanda
    • Marinov Ilya
    • de Laulanié Lucie
    • Dupuy Corinne
    • Wattelier Benoit
    • Starikovskaia Svetlana
    Applied Physics Letters, American Institute of Physics, 2015, 106. Phase images of biological specimens were obtained by the method of Quadriwave Lateral Shearing Interferometry (QWLSI). The QWLSI technique produces, at high resolution, phase images of the cells having been exposed to a plasma treatment and enables the quantitative analysis of the changes in the surface area of the cells over time. Morphological changes in the HTori normal thyroid cells were demonstrated using this method. There was a comparison of the cell behaviour between control cells, cells treated by plasma of a nanosecond dielectric barrier discharge, including cells pre-treated by catalase, and cells treated with an equivalent amount of H<SUB>2</SUB>O<SUB>2</SUB>. The major changes in the cell membrane morphology were observed at only 5 min after the plasma treatment. The primary role of reactive oxygen species (ROS) in this degradation is suggested. Deformation and condensation of the cell nucleus were observed 2-3 h after the treatment and are supposedly related to apoptosis induction. The coupling of the phase QWLSI with immunofluorescence imaging would give a deeper insight into the mechanisms of plasma induced cell death. (10.1063/1.4922525)
    DOI : 10.1063/1.4922525