Share

Publications

2016

  • Kinetics of excited species at high specific energy deposition: quenching by electrons in the afterglow of a nanosecond capillary discharge
    • Lepikhin N D
    • Klochko A.V.
    • Popov N A
    • Starikovskaia Svetlana
    , 2016, pp.AIAA-2016-1213.
  • Multi-point ignition of Hydrogen/Air mixtures with single pulsed nanosecond surface dielectric barrier discharge. Morphology of the discharge at elevated pressures
    • Shcherbanev S.A.
    • Popov N A
    • Starikovskaia Svetlana
    , 2016, pp.AIAA-2016-1692.
  • Exact scaling laws for helical three-dimensional two-fluid turbulent plasmas
    • Andrés Nahuel
    • Galtier Sébastien
    • Sahraoui Fouad
    Physical Review E, American Physical Society (APS), 2016, 94 (6), pp.063206. We derive exact scaling laws for a three-dimensional incompressible helical two-fluid plasma, without the assumption of isotropy. For each ideal invariant of the two-fluid model, i.e., the total energy, the electron helicity, and the proton helicity, we derive simple scaling laws in terms of two-point increment correlation functions expressed in terms of the velocity field of each species and the magnetic field. These variables are appropriate for comparison with direct numerical simulation data and with in situ measurements in the near-Earth space over a broad range of spatial scales. Finally, using the exact scaling laws and dimensional analysis we predict the magnetic energy and electron helicity spectra for different ranges of scales. (10.1103/PhysRevE.94.063206)
    DOI : 10.1103/PhysRevE.94.063206
  • Mars-solar wind interaction: LatHyS, an improved parallel 3-D multispecies hybrid model
    • Modolo Ronan
    • Hess Sebastien
    • Mancini Marco
    • Leblanc François
    • Chaufray Jean-Yves
    • Brain David
    • Leclercq Ludivine
    • Esteban Hernandez Rosa
    • Chanteur Gérard
    • Weill Philippe
    • González-Galindo Francisco
    • Forget François
    • Yagi Manabu
    • Mazelle Christian
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2016, 121 (7), pp.6378–6399. In order to better represent Mars-Solar wind interaction, we present an unprecedented model achieving spatial resolution down to 50 km, a so far unexplored resolution for global kinetic models of the Martian ionized environment. Such resolution approaches the ionospheric plasma scale height. In practice, the model is derived from a first version described in Modolo et al. [2005]. An important effort of parallelization has been conducted and is presented here. A better description of the ionosphere was also implemented including ionospheric chemistry, electrical conductivities and a drag force modelling the ion-neutral collisions in the ionosphere. This new version of the code, named LatHyS (Latmos Hybrid Simulation), is here used to characterize the impact of various spatial resolutions on simulation results. In addition, and following a global model challenge effort [Brain et al., 2010], we present the results of simulation run for three cases which allows addressing the effect of the supra-thermal corona and of the solar EUV activity on the magnetospheric plasma boundaries and on the global escape. Simulation results showed that global patterns are relatively similar for the different spatial resolution runs but finest grid runs provide a better representation of the ionosphere and display more details of the planetary plasma dynamic. Simulation results suggest that a significant fraction of escaping O+ ions is originated from below 1200 km altitude. (10.1002/2015JA022324)
    DOI : 10.1002/2015JA022324
  • Chiral exact relations for helicities in Hall magnetohydrodynamic turbulence
    • Banerjee Supratik
    • Galtier Sébastien
    Physical Review E, American Physical Society (APS), 2016, 93, pp.033120. Besides total energy, three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses two inviscid invariants, which are the magnetic helicity and the generalized helicity. Exact relations are derived for homogeneous (nonisotropic) stationary Hall MHD turbulence (and also for its inertialess electron MHD limit) with nonzero helicities and in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e., the scalar product of two different increments. It provides, therefore, a direct measurement of the dissipation rates for the corresponding invariant flux. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations, while the magnetic helicity cascade is linked to the right polarized fluctuations. (10.1103/PhysRevE.93.033120)
    DOI : 10.1103/PhysRevE.93.033120
  • Scaling of Compressible Magnetohydrodynamic Turbulence in the Fast Solar Wind
    • Banerjee Supratik
    • Hadid Lina
    • Sahraoui Fouad
    • Galtier Sébastien
    The Astrophysical Journal Letters, Bristol : IOP Publishing, 2016, 829 (2), pp.L27. The role of compressible fluctuations in the energy cascade of fast solar wind turbulence is studied using a reduced form of an exact law derived recently for compressible isothermal magnetohydrodynamics and in situ observations from the THEMIS B/ARTEMIS P1 spacecraft. A statistical survey of the data revealed a turbulent energy cascade over a range of two decades of scales that is broader than the previous estimates made from an exact incompressible law. A term-by-term analysis of the compressible model reveals new insight into the role played by the compressible fluctuations in the energy cascade. The compressible fluctuations are shown to amplify by two to four times the turbulent cascade rate with respect to the incompressible model in ~ 10 % of the analyzed samples. This new estimated cascade rate is shown to provide the adequate energy dissipation required to account for the local heating of the non-adiabatic solar wind. (10.3847/2041-8205/829/2/L27)
    DOI : 10.3847/2041-8205/829/2/L27
  • In situ observations of flux rope at the separatrix region of magnetic reconnection
    • Pang Y.
    • Wang D. D.
    • Huang S. Y.
    • Retinò Alessandro
    • Phan T. D.
    • Daughton W.
    • Vaivads A.
    • Karimabadi H.
    • Zhou M.
    • Sahraoui Fouad
    • Li G. L.
    • Yuan Z. G.
    • Deng X. H.
    • Fu H.S.
    • Fu S. Y.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2016, 121 (1), pp.205-213. We present the first in situ observations of a small-scale flux rope locally formed at the separatrix region of magnetic reconnection without large guide field. Bidirectional electron beams (cold and hot beams) and density cavity accompanied by intense wave activity substantiate the crossing of the separatrix region. Density compression and one parallel electron beam are detected inside the flux rope. We suggest that this flux rope is locally generated at the separatrix region due to the tearing instability within the separatrix current layer. This observation sheds new light on the 3-D picture of magnetic reconnection in space plasma. (10.1002/2015JA021468)
    DOI : 10.1002/2015JA021468
  • Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause
    • Ergun R. E.
    • Holmes J. C.
    • Goodrich K. A.
    • Wilder F. D.
    • Stawarz J. E.
    • Eriksson S.
    • Newman D. L.
    • Schwartz S. J.
    • Goldman M. V.
    • Sturner A. P.
    • Malaspina D. M.
    • Usanova M. E.
    • Torbert R. B.
    • Argall M.
    • Lindqvist P.-A.
    • Khotyaintsev Y. V.
    • Burch J. L.
    • Strangeway R. J.
    • Russell C. T.
    • Pollock C. J.
    • Giles B. L.
    • Dorelli J. J. C.
    • Avanov L.
    • Hesse Michael
    • Chen L. J.
    • Lavraud B.
    • Le Contel Olivier
    • Retinò Alessandro
    • Phan T. D.
    • Eastwood Jonathan P.
    • Oieroset M.
    • Drake J. F.
    • Shay M. A.
    • Cassak P. A.
    • Nakamura R.
    • Zhou M.
    • Ashour-Abdalla M.
    • André M.
    Geophysical Research Letters, American Geophysical Union, 2016, 43 (11), pp.5626-5634. We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E<SUB>||</SUB>) with amplitudes on the order of 100 mV/m and display nonlinear characteristics that suggest a possible net E<SUB>||</SUB>. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10 eV) plasma in the magnetosphere with warm (~100 eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause. (10.1002/2016GL068992)
    DOI : 10.1002/2016GL068992
  • Electron density measurements in highly electronegative plasmas
    • Rafalskyi D.V.
    • Lafleur Trevor
    • Aanesland Ane
    Plasma Sources Science and Technology, IOP Publishing, 2016, 25 (4), pp.047001. In this paper we present experimental measurements of the electron density in very electronegative ionion ArSF 6 plasmas where previous investigations using Langmuir probes have observed electronegativities of up to 5000. The electron density is measured using a short matched dipole probe technique that provides a tolerance better than&#8201;&#8201;±2 · 10 13 m &#8722;3 . The results demonstrate that the electron density in the low pressure plasma source (which contains a magnetic filter) can be reduced to around 2.7 · 10 13 m &#8722;3 with a corresponding plasma electronegativity of about 4000; close to that from fluid simulation predictions. The highest electronegativity, and lowest electron density, is achieved with a pure SF 6 plasma, while adding only 6% SF 6 to Ar allows the electronegativity to be increased from 0 to a few hundred with a corresponding decrease in the electron density by more than a thousand. The impedance probe based on a short matched dipole appears to be a practical diagnostic that can be used for independent measurements of the electron density in very electronegative plasmas, and opens up the possibility to further investigate and optimize electronegative plasma sources. (10.1088/0963-0252/25/4/047001)
    DOI : 10.1088/0963-0252/25/4/047001
  • Tailored voltage waveform capacitively coupled plasmas in electronegative gases: frequency dependence of asymmetry effects
    • Schüngel E.
    • Korolov Ihor
    • Bruneau Bastien
    • Derzsi A.
    • Johnson E.V.
    • O'Connell D.
    • Gans T.
    • Booth Jean-Paul
    • Donkó Z.
    • Schulze J.
    Journal of Physics D: Applied Physics, IOP Publishing, 2016, 49 (26), pp.265203. Capacitively coupled radio frequency plasmas operated in an electronegative gas (CF 4 ) and driven by voltage waveforms composed of four consecutive harmonics are investigated for different fundamental driving frequencies using PIC/MCC simulations and an analytical model. As has been observed previously for electropositive gases, the application of peak-shaped waveforms (that are characterized by a strong amplitude asymmetry) results in the development of a DC self-bias due to the electrical asymmetry effect (EAE), which increases the energy of ions arriving at the powered electrode. In contrast to the electropositive case (Korolov et al 2012 J. Phys. D: Appl. Phys . 45 465202) the absolute value of the DC self-bias is found to increase as the fundamental frequency is reduced in this electronegative discharge, providing an increased range over which the DC self-bias can be controlled. The analytical model reveals that this increased DC self-bias is caused by changes in the spatial profile and the mean value of the net charge density in the grounded electrode sheath. The spatio-temporally resolved simulation data show that as the frequency is reduced the grounded electrode sheath region becomes electronegative. The presence of negative ions in this sheath leads to very different dynamics of the power absorption of electrons, which in turn enhances the local electronegativity and plasma density via ionization and attachment processes. The ion flux to the grounded electrode (where the ion energy is lowest) can be up to twice that to the powered electrode. At the same time, while the mean ion energies at both electrodes are quite different, their ratio remains approximately constant for all base frequencies studied here. (10.1088/0022-3727/49/26/265203)
    DOI : 10.1088/0022-3727/49/26/265203
  • Direct Evidence of the Transition from Weak to Strong Magnetohydrodynamic Turbulence
    • Meyrand Romain
    • Galtier Sébastien
    • Kiyani K. H.
    Physical Review Letters, American Physical Society, 2016, 116, pp.105002. One of the most important predictions in magnetohydrodynamics is that in the presence of a uniform magnetic field b<SUB>0</SUB>e<SUB>^||</SUB> a transition from weak to strong wave turbulence should occur when going from large to small perpendicular scales. This transition is believed to be a universal property of several anisotropic turbulent systems. We present, for the first time, direct evidence of such a transition using a decaying three-dimensional direct numerical simulation of incompressible balanced magnetohydrodynamic turbulence with a grid resolution of 3072<SUP>2</SUP>×256 . From large to small scales, the change of regime is characterized by (i) a change of slope in the energy spectrum going from approximately -2 to -3 /2 , (ii) an increase of the ratio between the wave and nonlinear times, with a critical ratio of chi<SUB>c</SUB>1 /3 , (iii) a modification of the isocontours of energy revealing a transition from a purely perpendicular cascade to a cascade compatible with the critical-balance-type phenomenology, and (iv) an absence followed by a dramatic increase of the communication between Alfvén modes. The changes happen at approximately the same transition scale and can be seen as manifest signatures of the transition from weak to strong wave turbulence. Furthermore, we observe a significant nonlocal three-wave coupling between strongly and weakly nonlinear modes resulting in an inverse transfer of energy from small to large scales. (10.1103/PhysRevLett.116.105002)
    DOI : 10.1103/PhysRevLett.116.105002
  • A comparative experimental kinetic study of spontaneous and plasma-assisted cool flames in a rapid compression machine
    • Vanhove G.
    • Boumehdi M.-A.
    • Shcherbanev S.A.
    • Fenard Y.
    • Desgroux Pascale
    • Starikovskaia Svetlana
    Proceedings of the Combustion Institute, Elsevier, 2016. Plasma-assisted cool flames of n- heptane were generated in the combustion chamber of a rapid compression machine coupled with a nanosecond dielectric barrier discharge, at a pressure of 1.5 bar and temperature T = 650 K. Increasing of the voltage pulse amplitude at the electrode resulted in a transition from no reactivity to induced cool flame and then to fast ignition. Sampling of the reacting mixture was performed at selected times during the experiments to draw mole fraction profiles of the fuel and major low temperature stable intermediates, showing a gradual increase in the mole fraction of these species after the discharge. Comparison with a spontaneous cool flame case at a slightly higher pressure shows that no new species are formed in the plasma-assisted case, and that after the initiation of reactivity by the discharge at the nanosecond timescale, the distribution and relative importance of the main reaction pathways is conserved at the millisecond timescale. Differences in the shape of the mole fraction and light emission profiles however suggest that the plasma-assisted cool flame is propagative. (10.1016/j.proci.2016.09.007)
    DOI : 10.1016/j.proci.2016.09.007
  • A Review of General Physical and Chemical Processes Related to Plasma Sources and Losses for Solar System Magnetospheres
    • Seki K.
    • Nagy A.
    • Jackman C. M.
    • Crary F.
    • Fontaine Dominique
    • Zarka P.
    • Wurz Peter
    • Milillo A.
    • Slavin J. A.
    • Delcourt Dominique
    • Wiltberger M.
    • Ilie R.
    • Jia X.
    • Ledvina S. A.
    • Liemohn M. W.
    • Schunk R. W.
    • Blanc Michel
    • Chappell Charles R.
    • Krupp N.
    , 2016, pp.27-89. The aim of this paper is to provide a review of general processes related to plasma sources, their transport, energization, and losses in the planetary magnetospheres. We provide background information as well as the most up-to-date knowledge of the comparative studies of planetary magnetospheres, with a focus on the plasma supply to each region of the magnetospheres. This review also includes the basic equations and modeling methods commonly used to simulate the plasma sources of the planetary magnetospheres. In this paper, we will describe basic and common processes related to plasma supply to each region of the planetary magnetospheres in our solar system. First, we will describe source processes in Sect. 1. Then the transport and energization processes to supply those source plasmas to various regions of the magnetosphere are described in Sect. 2. Loss processes are also important to understand the plasma population in the magnetosphere and Sect. 3 is dedicated to the explanation of the loss processes. In Sect. 4, we also briefly summarize the basic equations and modeling methods with a focus on plasma supply processes for planetary magnetospheres.
  • The Baseline Th17 Lymphocytes Level Is a Predictive Marker of Good Response to Biologics in Rheumatoid Arthritis
    • Salomon Sarah
    • Guignant Caroline
    • Morel Pierre
    • Gubler Brigitte
    • Fardellone Patrice
    • Marolleau Jean-Pierre
    • Goeb Vincent
    Arthritis & rheumatology, Wiley, 2016, 68 (10).
  • Transport in the barrier billiard
    • Saberi Fathi S. M.
    • Ettoumi W.
    • Courbage M.
    Physical Review E, American Physical Society (APS), 2016, 93. We investigate transport properties of an ensemble of particles moving inside an infinite periodic horizontal planar barrier billiard. A particle moves among bars and elastically reflects on them. The motion is a uniform translation along the bars' axis. When the tangent of the incidence angle, alpha , is fixed and rational, the second moment of the displacement along the orthogonal axis at time n , , is either bounded or asymptotic to K n<SUP>2</SUP> , when n -->&infin; . For irrational alpha , the collision map is ergodic and has a family of weakly mixing observables, the transport is not ballistic, and autocorrelation functions decay only in time average, but may not decay for a family of irrational alpha 's. An exhaustive numerical computation shows that the transport may be superdiffusive or subdiffusive with various rates or bounded strongly depending on the values of alpha . The variety of transport behaviors sounds reminiscent of well-known behavior of conservative systems. Considering then an ensemble of particles with nonfixed alpha , the system is nonergodic and certainly not mixing and has anomalous diffusion with self-similar space-time properties. However, we verified that such a system decomposes into ergodic subdynamics breaking self-similarity. (10.1103/PhysRevE.93.062216)
    DOI : 10.1103/PhysRevE.93.062216
  • The Mass Spectrum Analyzer (MSA) on board the BepiColombo MMO
    • Delcourt Dominique C.
    • Saito Y.
    • Leblanc Frédéric
    • Verdeil Christophe
    • Yokota S.
    • Fraenz M.
    • Fischer H.
    • Fiethe B.
    • Katra Bruno
    • Fontaine Dominique
    • Illiano Jean-Marie
    • Berthelier Jean-Jacques
    • Krupp N.
    • Buhrke U.
    • Bubenhagen F.
    • Michalik H.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2016, 121 (7), pp.6749-6761. Observations from the MESSENGER spacecraft have considerably enhanced our understanding of the plasma environment at Mercury. In particular, measurements from the Fast Imaging Plasma Spectrometer (FIPS) provide evidences of a variety of ion species of planetary origin (He+, O+, Na+) in the northern dayside cusp and in the nightside plasma sheet. A more comprehensive view of Mercury's plasma environment will be provided by the Bepi Colombo mission that will be launched in 2018. Onboard the Bepi Colombo MMO spacecraft, the MPPE (Mercury Plasma/Particle Experiment) consortium gathers different sensors dedicated to particle measurements. Among these sensors, the Mass Spectrum Analyzer (MSA) is the instrument dedicated to plasma composition analysis. It consists of a top-hat for energy analysis followed by a Time-Of-Flight (TOF) chamber to derive the ion mass. Taking advantage of the spacecraft rotation, MSA will measure three-dimensional distribution functions in one spin (4 s), from energies characteristic of exospheric populations (in the eV range) up to plasma sheet energies (up to ~38 keV/q). A notable feature of the MSA instrument is that the TOF chamber is polarized with a linear electric field that leads to isochronous TOFs and enhanced mass resolution (typically, m/∆m ≈ 40 for ions with energies up to 13 keV/q). At Mercury, this capability is of paramount importance to thoroughly characterize the wide variety of ion species originating from the planet surface. It is thus anticipated that MSA will provide unprecedented information on ion populations in the Hermean environment and hence improve our understanding of the coupling processes at work. (10.1002/2016JA022380)
    DOI : 10.1002/2016JA022380
  • Poynting vector and wave vector directions of equatorial chorus
    • Taubenschuss U.
    • Santolík O.
    • Breuillard Hugo
    • Li W.
    • Le Contel Olivier
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2016, 121 (12), pp.11,912-11,928. We present new results on wave vectors and Poynting vectors of chorus rising and falling tones on the basis of 6 years of THEMIS (Time History of Events and Macroscale Interactions during Substorms) observations. The majority of wave vectors is closely aligned with the direction of the ambient magnetic field (B<SUB>0</SUB>). Oblique wave vectors are confined to the magnetic meridional plane, pointing away from Earth. Poynting vectors are found to be almost parallel to B<SUB>0</SUB>. We show, for the first time, that slightly oblique Poynting vectors are directed away from Earth for rising tones and toward Earth for falling tones. For the majority of lower band chorus elements, the mutual orientation between Poynting vectors and wave vectors can be explained by whistler mode dispersion in a homogeneous collisionless cold plasma. Upper band chorus seems to require inclusion of collisional processes or taking into account azimuthal anisotropies in the propagation medium. The latitudinal extension of the equatorial source region can be limited to ±6<SUP>o</SUP> around the B<SUB>0</SUB> minimum or approximately ±5000 km along magnetic field lines. We find increasing Poynting flux and focusing of Poynting vectors on the B<SUB>0</SUB> direction with increasing latitude. Also, wave vectors become most often more field aligned. A smaller group of chorus generated with very oblique wave normals tends to stay close to the whistler mode resonance cone. This suggests that close to the equatorial source region (within 20<SUP>o</SUP> latitude), a wave guidance mechanism is relevant, for example, in ducts of depleted or enhanced plasma density. (10.1002/2016JA023389)
    DOI : 10.1002/2016JA023389
  • Kinetic studies of NO formation in pulsed air-like low-pressure dc plasmas
    • Hübner M.
    • Gortschakow S.
    • Guaitella Olivier
    • Marinov Daniil
    • Rousseau Antoine
    • Röpcke J.
    • Loffhagen D.
    Plasma Sources Science and Technology, IOP Publishing, 2016, 25 (3), pp.035005. The kinetics of the formation of NO in pulsed air-like dc plasmas at a pressure of 1.33 mbar and mean currents between 50 and 150 mA of discharge pulses with 5&#8201;ms duration has been investigated both experimentally and by self-consistent numerical modelling. Using time-resolved quantum cascade laser absorption spectroscopy, the densities of NO, NO2 and N2O have been measured in synthetic air as well as in air with 0.8% of NO2 and N2O, respectively. The temporal evolution of the NO density shows four distinct phases during the plasma pulse and the early afterglow in the three gas mixtures that were used. In particular, a steep density increase during the ignition phase and after termination of the discharge current pulse has been detected. The NO concentration has been found to reach a constant value of , , and for mean plasma currents of 50 mA, 100 mA and 150 mA, respectively, in the afterglow. The measured densities of NO2 and N2O in the respective mixture decrease exponentially during the plasma pulse and remain almost constant in the afterglow, especially where the admixture of NO2 has a remarkable impact on the NO production during the ignition. The numerical results of the coupled solution of a set of rate equations for the various heavy particles and the time-dependent Boltzmann equation of the electrons agree quite well with the experimental findings for the different air-like plasmas. The main reaction processes have been analysed on the basis of the model calculations and the remaining differences between the experiment and modelling especially during the afterglow are discussed. (10.1088/0963-0252/25/3/035005)
    DOI : 10.1088/0963-0252/25/3/035005
  • Linear electromagnetic excitation of an asymmetric low pressure capacitive discharge with unequal sheath widths
    • Lieberman M.A.
    • Lichtenberg A.J.
    • Kawamura E.
    • Chabert Pascal
    Physics of Plasmas, American Institute of Physics, 2016, 23 (1), pp.013501. It is well-known that standing waves having radially center-high radio frequency (rf) voltage profiles exist in high frequency capacitive discharges. In this work, we determine the symmetric and antisymmetric radially propagating waves in a cylindrical capacitive discharge that is asymmetrically driven at the lower electrode by an rf voltage source. The discharge is modeled as a uniform bulk plasma which at lower frequencies has a thicker sheath at the smaller area powered electrode and a thinner sheath at the larger area grounded electrode. These are self-consistently determined at a specified density using the Child law to calculate sheath widths and the electron power balance to calculate the rf voltage. The fields and the system resonant frequencies are determined. The center-to-edge voltage ratio on the powered electrode is calculated versus frequency, and central highs are found near the resonances. The results are compared with simulations in a similar geometry using a two-dimensional hybrid fluid-analytical code, giving mainly a reasonable agreement. The analytic model may be useful for finding good operating frequencies for a given discharge geometry and power. (10.1063/1.4938204)
    DOI : 10.1063/1.4938204
  • Evolution of nanosecond surface dielectric barrier discharge for negative polarity of voltage pulse
    • Soloviev V.R.
    • Krivtsov V.M.
    • Shcherbanev S.A.
    • Starikovskaia Svetlana
    Plasma Sources Science and Technology, IOP Publishing, 2016, 26 (1), pp.014001 (12pp). Surface dielectric barrier discharge, initiated by a high-voltage pulse of negative polarity in atmospheric pressure air, is studied numerically and experimentally. At a pulse duration of a few tens of nanoseconds, two waves of optical emission propagate from the high-voltage electrode corresponding to the leading and trailing edges of the high-voltage pulse. It is shown by means of numerical modeling that a glow-like discharge slides along the surface of the dielectric at the leading edge of the pulse, slowing down on the plateau of the pulse. When the trailing edge of the pulse arrives to the high-voltage electrode, a second discharge starts and propagates in the same direction. The difference is that the discharge corresponding to the trailing edge is not diffuse and demonstrates a well-pronounced streamer-like shape. The 2D (in numerical modeling) streamer propagates above the dielectric surface, leaving a gap of about 0.05 mm between the streamer and the surface. The calculated and experimentally measured emission picture, waveform of the electrical current, and deposited energy, qualitatively coincide. The sensitivity of the numerical solution to unknown physical parameters of the model is discussed. (10.1088/0963-0252/26/1/014001)
    DOI : 10.1088/0963-0252/26/1/014001
  • Long-lived plasma and fast quenching of N<SUB>2</SUB>(C<SUP>3</SUP>P<SUB>u</SUB>) by electrons in the afterglow of a nanosecond capillary discharge in nitrogen
    • Lepikhin N D
    • Klochko A.V.
    • Popov N A
    • Starikovskaia Svetlana
    Plasma Sources Science and Technology, IOP Publishing, 2016, 25 (4), pp.045003. Quenching of electronically excited nitrogen state, ##IMG## [http://ej.iop.org/images/0963-0252/25/4/045003/psstaa2269ieqn003.gif] \textN_2≤ft(\textC^3Π_u,v^\prime=0\right) , in the afterglow of nanosecond capillary discharge in pure nitrogen is studied. It is found experimentally that an additional collisional mechanism appears and dominates at high specific deposited energies leading to the anomalously fast quenching of the ##IMG## [http://ej.iop.org/images/0963-0252/25/4/045003/psstaa2269ieqn004.gif] \textN_2≤ft(\textC^3Π_u\right) in the afterglow. On the basis of obtained experimental data and of the analysis of possible quenching agents, it is concluded that the anomalously fast deactivation of the ##IMG## [http://ej.iop.org/images/0963-0252/25/4/045003/psstaa2269ieqn005.gif] \textN_2≤ft(\textC^3Π_u\right) can be explained by quenching by electrons. Long-lived plasma at time scale of hundreds nanoseconds after the end of the pulse is observed. High electron densities, about 10 14 cm &#1074;3 at 27 mbar, are sustained by reactions of associative ionization. Kinetic 1D numerical modeling and comparison of calculated results with experimentally measured electric fields in the second high-voltage pulse 250 ns after the initial pulse, and electron density measurements in the afterglow confirm the validity of the suggested mechanism. (10.1088/0963-0252/25/4/045003)
    DOI : 10.1088/0963-0252/25/4/045003
  • Optimized merging of search coil and fluxgate data for MMS
    • Fischer David
    • Magnes Werner
    • Hagen Christian
    • Dors Ivan
    • Chutter Mark W.
    • Needell Jerry
    • Torbert Roy B.
    • Le Contel Olivier
    • Strangeway Robert J.
    • Kubin Gernot
    • Valavanoglou Aris
    • Plaschke Ferdinand
    • Nakamura R.
    • Mirioni Laurent
    • Russell Christopher T.
    • Leinweber Hannes K.
    • Bromund Kenneth R.
    • Le Guan
    • Kepko Lawrence
    • Anderson Brian J.
    • Slavin J. A.
    • Baumjohann W.
    Geoscientific Instrumentation, Methods and Data Systems, European Geosciences Union, 2016, 5, pp.521-530. The Magnetospheric Multiscale mission (MMS) targets the characterization of fine-scale current structures in the Earth's tail and magnetopause. The high speed of these structures, when traversing one of the MMS spacecraft, creates magnetic field signatures that cross the sensitive frequency bands of both search coil and fluxgate magnetometers. Higher data quality for analysis of these events can be achieved by combining data from both instrument types and using the frequency bands with best sensitivity and signal-to-noise ratio from both sensors. This can be achieved by a model-based frequency compensation approach which requires the precise knowledge of instrument gain and phase properties. We discuss relevant aspects of the instrument design and the ground calibration activities, describe the model development and explain the application on in-flight data. Finally, we show the precision of this method by comparison of in-flight data. It confirms unity gain and a time difference of less than 100 µs between the different magnetometer instruments. (10.5194/gi-5-521-2016)
    DOI : 10.5194/gi-5-521-2016
  • Comment on "Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry" [Appl. Phys. Lett. 105, 183104 (2014)]
    • Marinov Daniil
    Applied Physics Letters, American Institute of Physics, 2016, 108. Not Available (10.1063/1.4953260)
    DOI : 10.1063/1.4953260
  • Day-to-day variability of VTEC and ROTI in October 2012 with impact of high-speed solar wind stream on 13 October 2012
    • Azzouzi Ilyasse
    • Migoya-Orué Yenca
    • Coïsson Pierdavide
    • Amory-Mazaudier Christine
    • Fleury Rolland
    • Radicella Sandro
    Sun and Geosphere, BBC SWS Regional Network, 2016, 11 (1), pp.7-22. This paper presents the day-today variability of the Vertical Total Electron Content (VTEC) and the Rate of change of TEC Index (ROTI) in October 2012. We focused our attention to the impact of a high-speed solar wind stream (HSSWS) on the ionosphere in middle and low latitudes on 13 October 2012. This event was preceded by two other disturbances caused by a Coronal Mass Ejection (CME) at 05:26UT on 8 October and a HSSWS around 19:00UT on 9 October. The changes in the VTEC observed during the period between 8 and 12 October preceding the 13 October case showed a comparable response of the ionosphere in both hemispheres, varying mainly with latitude and presenting a stronger impact in the Northern hemisphere. The VTEC increased at the arrival of the CME on 8 October, then decreased, and increased again on 13 October. The solar wind speed associated with the second HSSWS reached its peak, 580 km/s around 17:00UT during the recovery phase of a geomagnetic storm started around 00:00UT on 13 October. Its impact was observed in Africa and in Eastern South America on the ROTI, an indicator of ionospheric scintillation. On 13 October, the ROTI was small over whole Africa and in Eastern South America at the moment the impact of the second HSSWS. These observations are interpreted as due to the ionospheric disturbance dynamo electric field associated with the Joule heating produced in the auroral zone by the HSSWS.
  • Langmuir turbulence driven by beams in solar wind plasmas with long wavelength density fluctuations
    • Krafft C.
    • Volokitin A.
    AIP Conference Proceedings, American Institute of Physics, 2016, 1720 (1), pp.040008. The self-consistent evolution of Langmuir turbulence generated by electron beams in solar wind plasmas with density inhomogeneities is calculated by numerical simulations based on a 1D Hamiltonian model. It is shown, owing to numerical simulations performed with parameters relevant to type III solar bursts' conditions at 1 AU, that the presence of long-wavelength random density fluctuations of sufficiently large average level crucially modifies the well-known process of beam interaction with Langmuir waves in homogeneous plasmas. (10.1063/1.4943819)
    DOI : 10.1063/1.4943819