Share

Publications

2017

  • Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en-route to Pluto. Comparison of its Forbush decreases at 1.4, 3.1 and 9.9 AU
    • Witasse O.
    • Sánchez-Cano B.
    • Mays M.
    • Kajdič P.
    • Opgenoorth H.
    • Elliott H.
    • Richardson G.
    • Zouganelis I.
    • Zender J.
    • Wimmer-Schweingruber R.
    • Turc Lucile
    • Taylor M.
    • Roussos E.
    • Rouillard A.
    • Richter I.
    • Richardson J.
    • Ramstad R.
    • Provan G.
    • Posner A.
    • Plaut J.
    • Odstrcil D.
    • Nilsson H.
    • Niemenen P.
    • Milan S.
    • Mandt K.
    • Lohf H.
    • Lester M.
    • Lebreton Jean-Pierre
    • Kuulkers E.
    • Krupp N.
    • Koenders C.
    • James M.
    • Intzekara D.
    • Holmstrom M.
    • Hassler M.
    • Hall S.
    • Guo J.
    • Goldstein R.
    • Goetz C.
    • Glassmeier H.
    • Génot V.
    • Evans H.
    • Espley J.
    • Edberg N.
    • Dougherty M.
    • Cowley S.
    • Burch J.
    • Behar E.
    • Barabash S.
    • Andrews D. J.
    • Altobelli N.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2017, Accepted Manuscript (8), pp.64 pages. We discuss observations of the journey throughout the Solar System of a large interplanetary coronal mass ejection (ICME) that was ejected at the Sun on 14 October 2014. The ICME hit Mars on 17 October, as observed by the Mars Express, MAVEN, Mars Odyssey and MSL missions, 44 hours before the encounter of the planet with the Siding-Spring comet, for which the space weather context is provided. It reached comet 67P/Churyumov-Gerasimenko, which was perfectly aligned with the Sun and Mars at 3.1 AU, as observed by Rosetta on 22 October. The ICME was also detected by STEREO-A on 16 October at 1 AU, and by Cassini in the solar wind around Saturn on the 12 November at 9.9 AU. Fortuitously, the New Horizons spacecraft was also aligned with the direction of the ICME at 31.6 AU. We investigate whether this ICME has a non-ambiguous signature at New Horizons. A potential detection of this ICME by Voyager-2 at 110-111 AU is also discussed. The multi-spacecraft observations allow the derivation of certain properties of the ICME, such as its large angular extension of at least 116°, its speed as a function of distance, and its magnetic field structure at four locations from 1 to 10 AU. Observations of the speed data allow two different solar wind propagation models to be validated. Finally, we compare the Forbush decreases (transient decreases followed by gradual recoveries in the galactic cosmic ray intensity) due to the passage of this ICME at Mars, comet 67P and Saturn. (10.1002/2017JA023884)
    DOI : 10.1002/2017JA023884
  • Global structure and sodium ion dynamics in Mercury's magnetosphere with the offset dipole
    • Yagi Manabu
    • Seki Kanako
    • Matsumoto Y.
    • Delcourt Dominique C.
    • Leblanc François
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2017, 122 (11), pp.10,990–11,002. We conducted global magnetohydrodynamics (MHD) simulation of Mercury's magnetosphere with the dipole offset, which was revealed by MESSENGER observations, in order to investigate its global structure under northward interplanetary magnetic field (IMF) conditions. Sodium ion dynamics originating from the Mercury's exosphere is also investigated based on statistical trajectory tracing in the electric and magnetic fields obtained from the MHD simulations. The results reveal a north-south asymmetry characterized by open field lines around southern polar region, and northward deflection of the plasma sheet in the far tail. The asymmetry of magnetic field structure near the planet drastically affects trajectories of sodium ion, and thus, their pressure distributions and precipitation pattern onto the planet. Weaker magnetic field strength in the southern hemisphere than in the north increases ion loss by precipitation onto the planetary surface in the southern hemisphere. The ‘sodium ring', which is formed by high-energy sodium ions drifting around the planet, is also found in the vicinity of the planet. The 'sodium ring' is almost circular under nominal solar wind conditions. The ring becomes partial under high solar wind density, because dayside magnetosphere is so compressed that there is no space for the sodium ions to drift around. In both cases, the 'sodium ring' is formed by sodium ions that are picked up and accelerated in the magnetosheath just outside the magnetopause and reentered into the magnetosphere due to combined effects of finite Larmor radius and convection electric field in the dawn-side magnetosphere. (10.1002/2017JA024082)
    DOI : 10.1002/2017JA024082
  • Measurements of density fluctuations in magnetic confined plasmas using Doppler backscattering technique
    • Vermare Laure
    • Hennequin Pascale
    • Honoré Cyrille
    • Pisarev V.
    • Giacalone J-C.
    , 2017.
  • Evidence and relevance of spatially chaotic magnetic field lines in MCF devices
    • Firpo Marie-Christine
    • Lifschitz Agustin
    • Ettoumi Wahb
    • Farengo Ricardo
    • Ferrari Hugo
    • Garcia-Martinez Pablo Luis
    Plasma Physics and Controlled Fusion, IOP Publishing, 2017, 59 (3). Numerical evidence for the existence of spatially chaotic magnetic field lines about the collapse phase of tokamak sawteeth with incomplete reconnection is presented. This uses the results of extensive test particle simulations in different sets of electromagnetic perturbations tested against experimental JET measurements. In tokamak sawteeth, that form a laboratory prototype of magnetic reconnection, the relative magnetic perturbation δB/B may reach a few percents. This does not apply to tokamak operating regimes dominated by turbulence where δB/B is usually not larger than 10 −4. However, this small magnetic perturbation being sustained by a large spectrum of modes is shown to be sufficient to ensure the existence of stochastic magnetic field lines. This has important consequences for magnetic confinement fusion (MCF) where electrons are dominantly governed by the magnetic force. Indeed some overlap between magnetic resonances can locally induce chaotic magnetic field lines enabling the spatial redistribution of the electron population and of its thermal content. As they are the swiftest plasma particles, electrons feed back the most rapid perturbations of the magnetic field (10.1088/1361-6587/aa570d)
    DOI : 10.1088/1361-6587/aa570d
  • Counterpropagating radiative shock experiments on the Orion laser
    • Suzuki-Vidal Francisco
    • Clayson Thomas
    • Stehlé Chantal
    • Swadling G. F.
    • Foster J.
    • Skidmore J.
    • Graham P.
    • Burdiak G.
    • Lebedev S. V.
    • Chaulagain Uddhab
    • Singh Raj Laxmi
    • Gumbrell E.
    • Patankar S.
    • Spindloe C.
    • Larour Jean
    • Kozlová Michaela
    • Rodriguez Perez R.
    • Gil J. M.
    • Espinosa G.
    • Velarde P.
    • Danson C.
    Physical Review Letters, American Physical Society, 2017, 119 (05), pp.055001. We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measured via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes NYM and PETRA shows very good agreement with the experimental results. (10.1103/PhysRevLett.119.055001)
    DOI : 10.1103/PhysRevLett.119.055001
  • Long-lived laser-induced arc discharges for energy channeling applications
    • Point Guillaume
    • Arantchouk Léonid
    • Thouin Emmanuelle
    • Carbonnel Jérôme
    • Mysyrowicz André
    • Houard Aurélien
    Scientific Reports, Nature Publishing Group, 2017, 7 (1), pp.13801. Laser filamentation offers a promising way for the remote handling of large electrical power in the form of guided arc discharges. We here report that it is possible to increase by several orders of magnitude the lifetime of straight plasma channels from filamentation-guided sparks in atmospheric air. A 30 ms lifetime can be reached using a low-intensity, 100 mA current pulse. Stability of the plasma shape is maintained over such a timescale through a continuous Joule heating from the current. This paves the way for applications based on the generation of straight, long duration plasma channels, like virtual plasma antennas or contactless transfer of electric energy. (10.1038/s41598-017-14054-z)
    DOI : 10.1038/s41598-017-14054-z
  • Erratum: "On the Existence of the Kolmogorov Inertial Range in the Terrestrial Magnetosheath Turbulence" (2017, ApJL, 836, L10)
    • Huang S. Y.
    • Hadid Lina
    • Sahraoui Fouad
    • Yuan Z. G.
    • Deng X. H.
    The Astrophysical Journal Letters, Bristol : IOP Publishing, 2017, 837 (2), pp.L31. Not Available (10.3847/2041-8213/aa633c)
    DOI : 10.3847/2041-8213/aa633c
  • Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation
    • Gibson Andrew R.
    • Gans Timo
    Plasma Sources Science and Technology, IOP Publishing, 2017, 26. The charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15--20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity. (10.1088/1361-6595/aa8dcd)
    DOI : 10.1088/1361-6595/aa8dcd
  • Influence of neutral pressure on instability enhanced friction and ion velocities at the sheath edge of two-ion-species plasmas
    • Adrian P. J.
    • Baalrud S. D.
    • Lafleur T.
    Physics of Plasmas, American Institute of Physics, 2017, 24. The Instability Enhanced Friction theory [Baalrud et al., Phys. Rev. Lett. 103, 205002 (2009)] is extended to account for the influence of neutral pressure in predicting the flow speed of each ion species at the sheath edge of plasmas containing two ion species. Particle-in-cell simulations show that the theory accurately predicts both the neutral pressure cutoff of ion-ion two-stream instabilities and the ion flow speeds at the sheath edge as pressure is varied over several orders of magnitude. The simulations are used to directly calculate the instability-enhanced ion-ion friction force. At sufficiently high neutral pressure, the simulations also provide evidence for collisional modifications to the Bohm criterion. (10.1063/1.4986239)
    DOI : 10.1063/1.4986239
  • Enhanced control of the ionization rate in radio-frequency plasmas with structured electrodes via tailored voltage waveforms
    • Doyle Scott J.
    • Lafleur Trevor
    • Gibson Andrew R.
    • Tian Peng
    • Kushner Mark J.
    • Dedrick James
    Plasma Sources Science and Technology, IOP Publishing, 2017, 26. Radio-frequency capacitively coupled plasmas that incorporate structured electrodes enable increases in the electron density within spatially localized regions through the hollow cathode effect (HCE). This enables enhanced control over the spatial profile of the plasma density, which is useful for several applications including materials processing, lighting and spacecraft propulsion. However, asymmetries in the powered and grounded electrode areas inherent to the hollow cathode geometry lead to the formation of a time averaged dc self-bias voltage at the powered electrode. This bias alters the energy and flux of secondary electrons leaving the surface of the cathode and consequentially can moderate the increased localized ionization afforded by the hollow cathode discharge. In this work, two-dimensional fluid-kinetic simulations are used to demonstrate control of the dc self-bias voltage in a dual-frequency driven (13.56, 27.12 MHz), hollow cathode enhanced, capacitively coupled argon plasma over the 66.6--200 Pa (0.5--1.5 Torr) pressure range. By varying the phase offset of the 27.12 MHz voltage waveform, the dc self-bias voltage varies by 10%--15% over an applied peak-to-peak voltage range of 600--1000 V, with lower voltages showing higher modulation. Resulting ionization rates due to secondary electrons within the hollow cathode cavity vary by a factor of 3 at constant voltage amplitude, demonstrating the ability to control plasma properties relevant for maintaining and enhancing the HCE. (10.1088/1361-6595/aa96e5)
    DOI : 10.1088/1361-6595/aa96e5
  • MMS observations of whistler waves in electron diffusion region
    • Cao D.
    • Fu H.S.
    • Cao J.B.
    • Wang T. Y.
    • Graham D. B.
    • Chen Z. Z.
    • Peng F. Z.
    • Huang S. Y.
    • Khotyaintsev Y. V.
    • André M.
    • Russell C. T.
    • Giles B. L.
    • Lindqvist P.-A.
    • Torbert R. B.
    • Ergun R. E.
    • Le Contel Olivier
    • Burch J. L.
    Geophysical Research Letters, American Geophysical Union, 2017, 44 (9), pp.3954-3962. Whistler waves that can produce anomalous resistivity by affecting electrons' motion have been suggested as one of the mechanisms responsible for magnetic reconnection in the electron diffusion region (EDR). Such type of waves, however, has rarely been observed inside the EDR so far. In this study, we report such an observation by Magnetospheric Multiscale (MMS) mission. We find large-amplitude whistler waves propagating away from the X line with a very small wave-normal angle. These waves are probably generated by the perpendicular temperature anisotropy of the 300 eV electrons inside the EDR, according to our analysis of dispersion relation and cyclotron resonance condition; they significantly affect the electron-scale dynamics of magnetic reconnection and thus support previous simulations. (10.1002/2017GL072703)
    DOI : 10.1002/2017GL072703
  • Differential kinetic physics of solar-wind minor ions
    • Perrone Denise
    • Valentini F.
    • Servidio S.
    • Stabile S.
    • Pezzi O.
    • Sorriso-Valvo L.
    • de Marco R.
    • Marcucci M. F.
    • Brienza D.
    • Bruno Roberto
    • Lavraud Benoit
    • Retinò Alessandro
    • Vaivads A.
    • Consolini G.
    • de Keyser J.
    • Salatti M.
    • Veltri P.
    , 2017, 19, pp.13382. The solar wind, although predominantly constituted of protons, is also made up of a finite amount of alpha particles, together with a few percent of heavier ions. The kinetic properties of heavy ions in the solar wind are known to behave in a well organized way under most solar-wind flow conditions: their speeds are faster than that of hydrogen by about the local Alfvén speed, and their kinetic temperatures are more than proportional to their mass. Preferential heating and acceleration of heavy ions in the solar wind and corona represent a long-standing theoretical problem in space physics, and are distinct experimental signatures of kinetic processes occurring in collisionless plasmas. However, due to very scarce measurements of heavy ions at time resolutions comparable with their kinetic scales, energy partition between species in turbulent plasma dissipation is basically unexplored. For the moment, most of the information comes from numerical simulations and a crucial support is given by self-consistent, fully nonlinear Vlasov models. Here, hybrid Vlasov-Maxwell simulations are used to investigate the role of kinetic effects in a two-dimensional turbulent multi-ion plasma, composed of kinetic protons and alpha particles, and fluid electrons. The response of different ion species to the fluctuating electromagnetic fields appears to be different. In particular, a significant differential heating of alpha particles with respect to protons is observed, localized nearby the peaks of ion vorticity and where strong deviations from thermodynamic equilibrium are recovered. Then, the understanding of the complex process of particle heating results strongly related to the study of the non-Maxwellian features on the three-dimensional ion velocity distributions. These numerical results highlight the importance for the future space missions to provide detailed ion measurements to make a significant step forward in the problem of heating in turbulent space plasmas.
  • Transfer of microwave energy along a filament plasma column in air
    • Prade Bernard
    • Houard Aurélien
    • Larour Jean
    • Pellet Michel
    • Mysyrowicz André
    Applied Physics B - Laser and Optics, Springer Verlag, 2017, 123, pp.40. We demonstrate the coupling of microwave radiation into a plasma channel formed by laser filamentation in air, leading to the amplification by two orders of magnitude of longitudinal oscillations of the plasma. Transfer of this longitudinal excitation towards unexcited region of the plasma column occurs over more than 10 cm, in good agreement with a theoretical model describing the propagation of a TM wave guided along the surface between air and plasma. We foresee that high power low frequency electromagnetic waves injected into a multi-filament plasma could initiate and sustain a long-lived plasma over several meters distance. (10.1007/s00340-016-6616-4)
    DOI : 10.1007/s00340-016-6616-4
  • Acceleration of energetic electrons by waves in inhomogeneous solar wind plasmas
    • Krafft C.
    • Volokitin A.
    Journal of Plasma Physics, Cambridge University Press (CUP), 2017, 83 (2), pp.705830201. The paper studies the influence of the background plasma density fluctuations on the dynamics of the Langmuir turbulence generated by electron beams, for parameters typical for solar type III beams and plasmas near 1 AU. A self-consistent Hamiltonian model based on the Zakharov and the Newton equations is used, which presents several advantages compared to the Vlasov approach. Beams generating Langmuir turbulence can be accelerated as a result of wave transformation effects or/and decay cascade processes; in both cases, the beam-driven Langmuir waves transfer part of their energy to waves of smaller wavenumbers, which can be reabsorbed later on by beam particles of higher velocities. As a consequence, beams can conserve a large part of their initial kinetic energy while propagating and radiating wave turbulence over long distances in inhomogeneous plasmas. Beam particles can also be accelerated in quasi-homogeneous plasmas due to the second cascade of wave decay, the wave transformation processes being very weak in this case. The net gains and losses of energy of a beam and the wave turbulence it radiates are calculated as a function of the average level of plasma density fluctuations and the beam parameters. The results obtained provide relevant information on the mechanism of energy reabsorption by beams radiating Langmuir turbulence in solar wind plasmas. (10.1017/S0022377817000174)
    DOI : 10.1017/S0022377817000174
  • The nonlinear behavior of whistler waves at the reconnecting dayside magnetopause as observed by the Magnetospheric Multiscale mission: A case study
    • Wilder F. D.
    • Ergun R. E.
    • Newman D. L.
    • Goodrich K. A.
    • Trattner K. J.
    • Goldman M. V.
    • Eriksson S.
    • Jaynes A. N.
    • Leonard T.
    • Malaspina D. M.
    • Ahmadi N.
    • Schwartz S. J.
    • Burch J. L.
    • Torbert R. B.
    • Argall M. R.
    • Giles B. L.
    • Phan T. D.
    • Le Contel Olivier
    • Graham D. B.
    • Khotyaintsev Yu V.
    • Strangeway R. J.
    • Russell C. T.
    • Magnes W.
    • Plaschke F.
    • Lindqvist P.-A.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2017, 122 (5), pp.5487-5501. We show observations of whistler mode waves in both the low-latitude boundary layer (LLBL) and on closed magnetospheric field lines during a crossing of the dayside reconnecting magnetopause by the Magnetospheric Multiscale (MMS) mission on 11 October 2015. The whistlers in the LLBL were on the electron edge of the magnetospheric separatrix and exhibited high propagation angles with respect to the background field, approaching 40°, with bursty and nonlinear parallel electric field signatures. The whistlers in the closed magnetosphere had Poynting flux that was more field aligned. Comparing the reduced electron distributions for each event, the magnetospheric whistlers appear to be consistent with anisotropy-driven waves, while the distribution in the LLBL case includes anisotropic backward resonant electrons and a forward resonant beam at near half the electron-Alfvén speed. Results are compared with the previously published observations by MMS on 19 September 2015 of LLBL whistler waves. The observations suggest that whistlers in the LLBL can be both beam and anisotropy driven, and the relative contribution of each might depend on the distance from the X line. (10.1002/2017JA024062)
    DOI : 10.1002/2017JA024062
  • Electron Scattering by High-frequency Whistler Waves at Earth's Bow Shock
    • Oka M.
    • Wilson Iii L. B.
    • Phan T. D.
    • Hull A. J.
    • Amano T.
    • Hoshino M.
    • Argall M. R.
    • Le Contel Olivier
    • Agapitov O.
    • Gershman D. J.
    • Khotyaintsev Y. V.
    • Burch J. L.
    • Torbert R. B.
    • Pollock C.
    • Dorelli J. C.
    • Giles B. L.
    • Moore T. E.
    • Saito Y.
    • Avanov L. A.
    • Paterson W. R.
    • Ergun R. E.
    • Strangeway R. J.
    • Russell C. T.
    • Lindqvist P. A.
    The Astrophysical Journal Letters, Bristol : IOP Publishing, 2017, 842 (2), pp.L11. Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earth's bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvén Mach number ~11 and a shock angle ~84°. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.5−2 keV) electron flux, correlated with high-frequency (0.2−0.4 Omega <SUB>ce</SUB>, where Omega <SUB>ce</SUB> is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1 ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear. (10.3847/2041-8213/aa7759)
    DOI : 10.3847/2041-8213/aa7759
  • Statistical study of the alteration of the magnetic structure of magnetic clouds in the Earth's magnetosheath
    • Turc Lucile
    • Fontaine Dominique
    • Escoubet C. Philippe
    • Kilpua E. K. J.
    • Dimmock A. P.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2017, 122 (3), pp.2956-2972. The magnetosheath plays a central role in the solar wind-magnetospheric coupling. Yet the effects of its crossing on solar wind structures such as magnetic clouds (MCs) are generally overlooked when assessing their geoeffectivity. Using 82 MCs observed simultaneously in the solar wind and the magnetosheath, we carry out the first statistical study of the alteration of their magnetic structure in the magnetosheath. For each event, the bow shock properties are obtained from a magnetosheath model. The comparison between the model results and observations shows that in 80% of cases, the MHD-based model captures well the magnetosheath transition; the other events are discussed separately. We find that just downstream of the bow shock the variation of the magnetic field direction shows a very good anticorrelation (r =- 0.91) with the angle between the upstream magnetic field and the shock normal. We then focus on the magnetic field north-south component B<SUB>z</SUB> because of its importance for geoeffectivity. Although the sign of B<SUB>z</SUB> is generally preserved in the magnetosheath, we also find evidence of long-lasting intervals of opposite B<SUB>z</SUB> signs in the solar wind and the magnetosheath during some events, with a |B<SUB>z</SUB>| reversal >10 nT at the magnetopause. We find that these reversals are due to the draping of the field lines and are associated with predominant upstream B<SUB>y</SUB>. In those cases, the estimated position of the regions of antiparallel fields along the magnetopause is independent of the sign of the upstream B<SUB>z</SUB>. This may have strong implications in terms of reconnection. (10.1002/2016JA023654)
    DOI : 10.1002/2016JA023654
  • Optical emission spectrum of filamentary nanosecond surface dielectric barrier discharge
    • Shcherbanev S.A.
    • Khomenko A.Yu.
    • Stepanyan S.A.
    • Popov N.A.
    • Starikovskaia Svetlana
    Plasma Sources Science and Technology, IOP Publishing, 2017, 26 (2), pp.02LT01 (7pp). Streamer-to-filament transition is a general feature of high pressure high voltage (HV) nanosecond surface dielectric barrier discharges. The transition was studied experimentally using time- and space-resolved optical emission in UV and visible parts of spectra. The discharge was initiated by HV pulses 20 ns in duration and 2 ns rise time, positive or negative polarity, 2060 kV in amplitude on the HV electrode. The experiments were carried out in a single-shot regime at initial pressures P > 3 bar and ambient initial temperature in air, N2, H2:N2 and O2:Ar mixtures. It was shown that the transition to filamentary mode is accompanied by the appearance of intense continuous radiation and broad atomic lines. Electron density calculated from line broadening is characterized by high absolute values and long decay in the afterglow. The possible reasons for the continuous spectra were analyzed. (10.1088/1361-6595/26/2/02LT01)
    DOI : 10.1088/1361-6595/26/2/02LT01
  • The role of thermal energy accommodation and atomic recombination probabilities in low pressure oxygen plasmas
    • Gibson Andrew
    • Foucher Mickaël
    • Marinov Daniil
    • Chabert Pascal
    • Gans T.
    • Kushner M.J.
    • Booth Jean-Paul
    Plasma Physics and Controlled Fusion, IOP Publishing, 2017, 59 (2), pp.024004. Surface interaction probabilities are critical parameters that determine the behaviour of low pressure plasmas and so are crucial input parameters for plasma simulations that play a key role in determining their accuracy. However, these parameters are difficult to estimate without in situ measurements. In this work, the role of two prominent surface interaction probabilities, the atomic oxygen recombination coefficient ? O and the thermal energy accommodation coefficient ? E in determining the plasma properties of low pressure inductively coupled oxygen plasmas are investigated using two-dimensional fluid-kinetic simulations. These plasmas are the type used for semiconductor processing. It was found that ? E plays a crucial role in determining the neutral gas temperature and neutral gas density. Through this dependency, the value of ? E also determines a range of other plasma properties such as the atomic oxygen density, the plasma potential, the electron temperature, and ion bombardment energy and neutral-to-ion flux ratio at the wafer holder. The main role of ? O is in determining the atomic oxygen density and flux to the wafer holder along with the neutral-to-ion flux ratio. It was found that the plasma properties are most sensitive to each coefficient when the value of the coefficient is small causing the losses of atomic oxygen and thermal energy to be surface interaction limited rather than transport limited. (10.1088/1361-6587/59/2/024004)
    DOI : 10.1088/1361-6587/59/2/024004
  • Localized reversal of the perpendicular velocity in Tore Supra ohmic, L-mode, limited plasmas
    • Trier Elisée
    • Hennequin Pascale
    • Gürcan Özgür D.
    • Sabot R.
    • Bucalossi J.
    • Guimarães-Filho Z.O.
    • Bourdelle C.
    • Clairet F.
    • Falchetto G.
    • Fenzi C.
    • Garbet X.
    • Maget P.
    • Vermare Laure
    • The Tore Supra Team
    Nuclear Fusion, IOP Publishing, 2017, 57 (4), pp.046021. In Tore Supra plasmas, the perpendicular velocity measured by Doppler reflectometry was observed to reverse in a localized zone close to a normalized radius???0.5?0.6, changing from a negative value (corresponding to a negative radial electric field E r ) to a positive value ( ##IMG## [http://ej.iop.org/images/0029-5515/57/4/046021/nfaa59bbieqn001.gif] E_\textr>0 ). This occurs in L-mode, ohmic plasmas with a negligible external momentum input, a non-circular limited cross-section, and an edge safety factor close to 3. This reversal is favoured by a decrease in the magnetic field, or an increase in density. It is accompanied by a characteristic behaviour of the MHD activity signal, whose amplitude decrease during a ramp-down of the edge safety factor as it approaches ##IMG## [http://ej.iop.org/images/0029-5515/57/4/046021/nfaa59bbieqn002.gif] q_a∼ 3.1 ?3.2. A m / n ??=??2/1 mode is involved in the mechanism causing these observations. (10.1088/1741-4326/aa59bb)
    DOI : 10.1088/1741-4326/aa59bb
  • On the historical origins of the CEJ, DP2 and Ddyn current systems and their roles in the predictions of ionospheric responses to geomagnetic storms at equatorial latitudes
    • Amory-Mazaudier Christine
    • Bolaji O. S.
    • Doumbia V.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2017. In this short letter, we recall the differences between the Counter electrojet (CEJ), which is a phenomenon observed on the magnetically quiet days and the disturbance dynamo (Ddyn), which can be observed during and after a geomagnetic storm. The CEJ is well-known to occur near the geomagnetic dip equator. It can be identified by a reversal in the horizontal component (H) of the geomagnetic field daily regular variations. In contrasts to equatorial electrojet (EEJ) that flows eastward in the daytime the CEJ in considered to flow westward. The magnetic signatures of the reversed solar quiet (Sq) current at the low latitude during magnetic storms are due to the Ddyn. This disturbance (Ddyn) is produced by current systems that are driven by thermospheric storm winds originating from the Joule heating of enhanced high latitude currents. The DP2 is the magnetic effect of current systems at high latitudes. These currents are associated with the coupling of magnetosphere and ionosphere through geomagnetic field lines. They are associated to the magnetospheric convection. During intense magnetic storms these high latitude currents are enhanced and their magnetic effects can extend toward the low latitudes This work shows that the study of magnetic perturbations makes it possible to understand the disturbances of the ionospheric electric currents. The use of an efficient treatment of the magnetic signals makes it possible to separate the magnetic effects of the different perturbations PPEF and DDEF. This was performed in the paper Nava et al. (2016). (10.1002/2017JA024132)
    DOI : 10.1002/2017JA024132
  • Advanced Ion Mass Spectrometer for Giant Planet Ionosphere, Magnetospheres and Moons
    • Sittler E.C.
    • Cooper J.F.
    • Paschalidis N.
    • Jones S.
    • Brinkerhoff William
    • Paterson W. R.
    • Ali Ashraf
    • Coplan M.A.
    • Chornay D.
    • Sturners S.J.
    • Benna Mehdi
    • Bateman F.B.
    • Fontaine Dominique
    • Verdeil Christophe
    • Andre N.
    • Blanc Michel
    • Wurz Peter
    , 2017, pp.T1.023. We present our Advanced Ion Mass Spectrometer (AIMS) for outer planet missions which has been under development from various NASA sources (NASA Living with a Star Instrument Development (LWSID), NASA Astrobiology Instrument Development (ASTID), NASA Goddard Internal Research and Development (IRAD)s) to measure elemental, isotopic, and simple molecular composition abundances of 1 V to 25 kV hot ions with wide field-of-view (FOV) in the 1 - 60 amu mass range at mass resolution M/ DeltaM <= 60 over a wide dynamic range of particle intensities and penetrating radiation background from the inner magnetospheres of Jupiter and Saturn to the outer magnetospheric boundary regions and the upstream solar wind. This instrument will work for both spinning spacecraft and 3-axis stabilized spacecraft. AIMS will measure the ion velocity distribution functions (VDF) for the individual ion species from which velocity moments will give their ion density, flow velocity and temperature.
  • Dynamic probing of plasma-catalytic surface processes: Oxidation of toluene on CeO<sub>2</sub>
    • Jia Zixian
    • Wang Xianjie
    • Thevenet Frederic
    • Rousseau Antoine
    Plasma Processes and Polymers, Wiley-VCH Verlag, 2017. This article reports the use of innovative diagnostics to monitor toluene adsorption and oxidation on CeO2 surface under non-thermal plasma (NTP) exposure. Two plasma-catalytic configurations are explored, namely: post-plasma catalysis (PPC) and in-plasma catalysis (IPC). Since heterogeneous processes are pointed out as key steps of the plasma-catalyst coupling, the catalyst surface has been monitored by two complementary in situ diagnostics: (i) diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) and (ii) transmission fourier transform infrared spectroscopy using Sorbent track (ST) device. Dielectric barrier discharges (DBD) are used in both PPC and IPC configurations to induce adsorbed toluene oxidation. Toluene in dry air is first adsorbed on the selected catalytic surface: ceria (CeO2). Subsequently, the plasma is switched on. During the experiment, the ceria surface is monitored by infrared to study toluene adsorption and oxidation mechanisms. The adsorption capacity of toluene on ceria is, respectively, measured in the configurations of PPC and IPC by DRIFTS and ST. The oxidation of toluene by plasma follows a first-order reaction regardless of plasma configuration and injected power and IPC is more effective for the toluene removal than PPC. Intermediates of toluene (benzyl alcohol, benzaldehyde and benzoic acid) are also identified on the surface and their respective temporal evolutions as a function of the plasma exposure are studied.ppap201600114-gra-0001 (10.1002/ppap.201600114)
    DOI : 10.1002/ppap.201600114
  • Power coupling mode transitions induced by tailored voltage waveforms in capacitive oxygen discharges
    • Derzsi A.
    • Bruneau Bastien
    • Gibson Andrew
    • Johnson Erik
    • O'Connell D.
    • Gans T.
    • Booth Jean-Paul
    • Donko Zoltan
    Plasma Sources Science and Technology, IOP Publishing, 2017, 26 (3), pp.034002. Low-pressure capacitively coupled radio frequency discharges operated in O 2 and driven by tailored voltage waveforms are investigated experimentally and by means of kinetic simulations. Pulse-type (peaks/valleys) and sawtooth-type voltage waveforms that consist of up to four consecutive harmonics of the fundamental frequency are used to study the amplitude asymmetry effect as well as the slope asymmetry effect at different fundamental frequencies (5, 10, and 15 MHz) and at different pressures (50?700 mTorr). Values of the DC self-bias determined experimentally and spatio-temporal excitation rates derived from phase resolved optical emission spectroscopy measurements are compared with particle-in-cell/Monte Carlo collisions simulations. The spatio-temporal distributions of the excitation rate obtained from experiments are well reproduced by the simulations. Transitions of the discharge electron heating mode from the drift-ambipolar mode to the ? -mode are induced by changing the number of consecutive harmonics included in the driving voltage waveform or by changing the gas pressure. Changing the number of harmonics in the waveform has a strong effect on the electronegativity of the discharge, on the generation of the DC self-bias and on the control of ion properties at the electrodes, both for pulse-type, as well as sawtooth-type driving voltage waveforms The effect of the surface quenching rate of oxygen singlet delta metastable molecules on the spatio-temporal excitation patterns is also investigated. (10.1088/1361-6595/aa56d6)
    DOI : 10.1088/1361-6595/aa56d6
  • Zipper-like periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations
    • Li J.
    • Bortnik J.
    • Li W.
    • Ma Q.
    • Thorne R. M.
    • Kletzing C. A.
    • Kurth W. S.
    • Hospodarsky G. B.
    • Wygant J.
    • Breneman A.
    • Thaller S.
    • Funsten H. O.
    • Mitchell D. G.
    • Manweiler J. W.
    • Torbert R. B.
    • Le Contel Olivier
    • Ergun R. E.
    • Lindqvist P.-A.
    • Torkar Klaus
    • Nakamura R.
    • Andriopoulou M.
    • Russell C. T.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2017, 122 (2), pp.1600-1610. An interesting form of "zipper-like" magnetosonic waves consisting of two bands of interleaved periodic rising-tone spectra was newly observed by the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Magnetospheric Multiscale (MMS) missions. The two discrete bands are distinct in frequency and intensity; however, they maintain the same periodicity which varies in space and time, suggesting that they possibly originate from one single source intrinsically. In one event, the zipper-like magnetosonic waves exhibit the same periodicity as a constant-frequency magnetosonic wave and an electrostatic emission, but the modulation comes from neither density fluctuations nor ULF waves. A statistical survey based on 3.5 years of multisatellite observations shows that zipper-like magnetosonic waves mainly occur on the dawnside to noonside, in a frequency range between 10 f<SUB>cp</SUB> and f<SUB>LHR</SUB>. The zipper-like magnetosonic waves may provide a new clue to nonlinear excitation or modulation process, while its cause still remains to be fully understood. (10.1002/2016JA023536)
    DOI : 10.1002/2016JA023536