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Abstract. We present the first edge Er measurements in negative triangularity
(NT) TCV plasmas. The Doppler backscattering measurements of v⊥ ≈ Er/B
reveal a significant impact of triangularity on the Er well: In Ohmic, NBI, and
ECRH heated discharges, the Er well and associated Er × B shear are stronger
in NT-shaped plasmas compared to their positive triangularity (PT) counterpart.
This suggests a connection to the concomitant NT performance gain relative to
PT L-mode.

‡ See author list of B.P. Duval et al 2024 Nucl. Fusion 64 112023
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1. Introduction

Efforts to reconcile high fusion performance in future
tokamak reactors with power handling demands
have motivated research into non-conventional plasma
confinement modes and configurations [1]. Negative
triangularity (NT) has emerged in recent years as
a promising alternative to the conventional positive
triangularity (PT) plasma geometry (see [2] for a
review), aligned with a “power-handling-first” reactor
design strategy [3]. By preventing the transition from
L- to H-mode, NT passively suppresses edge-localized
modes (ELMs)—harmful instabilities associated with
H-mode that future reactors must avoid [1]. At the
same time, NT-shaped plasmas exhibit particularly
good L-mode confinement [4–11], comparable with that
of PT H-mode. These beneficial features of NT provide
strong motivation to understand their underlying
mechanisms. A prominent hypothesis for the H-
mode suppression in sufficiently NT shapes invokes the
destabilization of infinite-n MHD ballooning modes,
closing access to second stability [12–14]. Concerning
the outstanding L-mode confinement observed in NT,
while a generally conclusive picture has not emerged
yet, several relevant hints have been obtained: The
empiric reduction of fluctuation levels in NT compared
to PT [5, 6, 15–20], as well as modeling results [21–
27], point to a beneficial effect of NT on ion-scale
turbulence. In particular, modeling results suggest
a stabilization of trapped electron modes (TEM) [21,
26, 28], while recent studies find a similar impact also
on ion temperature gradient (ITG) driven modes [23,
25]. Further, experimental findings from DIII-D [29,
30] and TCV [11, 31] highlight the importance of
the plasma edge, attributing the performance gain in
NT partly to increased values of pressure and of its
gradient near the separatrix. Yet, the fundamental
reason for this distinct edge behavior remains unclear.
Crucial to edge transport is the radial electric field
(Er) “well” that forms within a thin radial layer just
inside the separatrix. The associated Er × B velocity
shear is widely recognized as playing a major role
in the regulation of turbulent transport [32, 33] and,
consequently, of confinement. While the tokamak edge
and in particular its Er structure remain generally
insufficiently understood, this is especially true for
NT. Characterizing the NT edge and comparing it to
PT with a particular focus on Er might offer insights
into tokamak edge transport in general, which is key
to improving predictive confinement models for future
devices.

In this context, we report on Doppler backscatter-
ing measurements of the edge Er profile in NT com-
pared to PT shaped plasmas in the Tokamak à Config-
uration Variable (TCV) [34] (major radius R = 0.88m,
minor radius a = 0.25m, on-axis magnetic field |B0| <

1.54T, plasma current |Ip| < 1MA). This study ex-
tends the scarce database on the Er well in NT [8, 20,
35]. Our data provide what is, to our knowledge, the
first systematic comparison of Er in matched NT/PT
discharges, isolating the effect of triangularity. The
structure of this letter is as follows: Sec. 2 outlines
the diagnostics and analysis approach. Sec. 3 discusses
NT/PT comparisons in matched L-mode discharges,
and Sec. 4 addresses higher-performance scenarios. A
summary is provided in Sec. 5.

2. Experimental Method

As a proxy for Er (the main focus of this study), we
use the turbulence perpendicular velocity v⊥ measured
via Doppler backscattering (DBS) [36, 37]. DBS uses
a microwave beam to probe the plasma and detects
the wave scattered back by density fluctuations. The
scattering fluctuations are localized near the beam
turning point and have a perpendicular wave number,
k⊥, selected by the scattering geometry. The Doppler
shift (ωD) introduced by the moving scatterers gives
access to their lab frame velocity, v⊥ = ωD/k⊥, which
corresponds to the Er × B rotation if the turbulence
intrinsic velocity is negligible—as commonly assumed
and supported by numerical [27, 38] and experimental
evidence (see [39] and references therein). v⊥ is
inferred by extracting ωD from the power spectral
density (PSD) of the DBS signal, combined with
beamtracing to determine the beam turning point and
the selected k⊥. Radial profiles of v⊥ (or Er) are
obtained by stepping the probing frequency.

TCV is currently equipped with a dual-channel
V-band DBS diagnostic, on loan from LPP [40]. It
allows edge v⊥ profiles to be measured within a
typical repitition time of 100ms. The DBS beam
is launched from the upper low field side, providing
access to the first quadrant of the plasma cross-section,
see Fig. 1. The DBS system and data processing
method at TCV are described in Ref.[40]. All radial
profiles in this letter are displayed as a function of
the flux surface label, ρψ, defined as the square root
of the normalized poloidal flux. The sign of v⊥
is chosen positive (negative) when pointing in the
ion (electron) diamagnetic direction. Otherwise, we
adopt the standard COCOS17 [41] toroidal coordinates
convention (a positive Ip or B0 is anti-clockwise when
viewed from above).

Besides v⊥, the analysis includes electron density
(ne) and temperature (Te) profiles constructed from
Thomson scattering (TS) [42] data. The ion temper-
ature (Ti) is obtained by charge exchange recombina-
tion spectroscopy (CXRS) [43] using the CX reactions
triggered by a low-power, low-torque diagnostic neu-
tral beam (DNBI) [44] on carbon impurity (C6+) ions.
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Possible deviations of the main ion temperature from
that of C6+ (see [45] and references therein) are not
considered. The CXRS profiles are also used for an
estimation of the outer core profile of Er through the
radial force balance, following the procedure described
in Ref. [40]: The poloidal impurity flow is computed us-
ing the neoclassical code NEO [46] with kinetic profiles
as inputs, while the diamagnetic and toroidal velocity
contributions to the force balance are obtained from
spline fits to the CXRS data. The diagnostics’ prob-
ing locations are indicated in Fig. 1. No radial shifts
for diagnostic alignment are applied in the profile map-
ping.

Confinement level is quantified using conventional
0D metrics: the steady-state (dW/dt = 0) energy
confinement time,

τE = W/Pin ,

the H-mode enhancement factor (H-factor),

H98y2 = τE/τ
IPB98(y,2)
E

and the normalized beta,

βN = β[%]a[m]B0[T]/Ip[MA] .

In these expressions, W is the total thermal energy
content computed from the (electron + ion) pressure
profile p = neTe + niTi. Main ion dilution by
C6+ impurities is accounted for; ni is obtained from
ne using a global estimate of the effective charge

state, Zeff . Pin is the injected power, τ
IPB98(y,2)
E the

IPB98(y,2) scaling law [47] and β = 2⟨p⟩µ0/B
2
0 the

thermal to magnetic pressure ratio.
Finally, we characterize the magnetic geometry

using the edge safety factor q95, elongation κ, bottom
and top triangularities δbot/top, and their average δ,
as well as the ion B ×∇B drift direction (termed
“favorable” or “unfavorable” when pointing towards
or away from the X-point, respectively).

3. NT vs. PT in matched L-mode conditions

First, a pair of upper single-null (USN), Ohmic L-
mode deuterium discharges with favorable B ×∇B
drift is investigated. The shapes have opposite edge
bottom triangularity (δbot ≈ ±0.3), but the equilibria
are largely matched otherwise (Fig. 1). The main
discharge parameters are summarized in Tab. 1. At
fixed Ip and B0, the NT geometry results in a q95
about 7% lower than in PT. This small difference
is unlikely to affect the comparison, especially since
TCV experiments indicate only a minor influence of
q95 on the Er well [48]. Keeping the upper half of
the shapes fixed ensures nearly identical DBS probing
geometries. This minimizes possible biases e.g. due to

differences in local flux expansion or probed turbulence
wave numbers (k⊥). The latter varies radially in the
range of k⊥ ∈ [5, 6] rad/cm (k⊥ρs ∼ 0.5)a, but differs
only slightly (≲ 10%) between NT and PT.

The v⊥ profiles corresponding to a stationary
phase of the discharges (over several τE) are displayed
in Fig. 2 (A), Ti in (B), and ne and Te in (C) and (D),
respectively. A remarkable difference is observed: The
NT case exhibits a sharp well of vmin

⊥ ≈ −4 km/s,
while that of the PT case has a depth vmin

⊥ ≈
−2 km/s, typical of comparable L-mode PT discharges
in TCV [40]. The kinetic profiles reveal a higher
L-mode density pedestal in NT, radially coinciding
with the velocity well, where v⊥ differs most between
NT and PT. At same levels of Ohmic heating, τE
is increased by roughly 30% in the NT case (see
Tab. 1), as reflected by higher density—despite ≈ 35%
lower fueling rate—and slightly higher ion and electron
temperatures, up to the core (not shown). Meanwhile,
the edge C6+ toroidal velocity (vφ, not shown) does not
differ notably between NT and PT within experimental
uncertainties. In the core, an intrinsic counter-Ip
rotation of vφ ≈ 15 ± 5 km/s is observed (slightly
weaker in PT), decaying toward near-zero values at
the edge.

The trend of improved confinement and a deeper
v⊥ well in NT persists under moderate auxiliary
heating, whether by co-current neutral beam injection
(NBI) or second-harmonic electron cyclotron resonance
heating (ECRH). This behavior is observed both at
equal heating powers—PNBI = 420 kW and PECRH =
580 kW (not shown)—and when the heating power
is adjusted between NT and PT to achieve matched
kinetic profiles, as shown in Fig. 3 and further
discussed below. This suggests a degree of robustness,
particularly with respect to external momentum input
and to the dominant heating species (leading to Ti ∼
Te or Ti ≪ Te in the core for NBI and ECRH,
respectively).
For an analysis of the turbulence level using DBS
data, we examine two NT/PT pairs with profiles
shown in Fig. 3. They are heated by NBI and ECRH,
respectively, with higher power applied in PT to better
match the NT kinetic profiles. The matched density
profiles (Fig. 3c–d) enable a qualitative assessment of
the turbulence intensity, around a given k⊥ [37]. More
precisely, at fixed probing frequencies, the DBS signals’
power provide a relative measure of |ñ(k⊥)|2 between
NT and PT, at a common ρψ and k⊥. In the two
pairs considered in Fig. 3, the DBS power tends to
be higher in PT by a factor varying between ∼ 1–
1.8. This is exemplified for the ECRH pair in Fig. 4,
where the PSD is compared between NT and PT

a The ion Larmor radius at soundspeed, ρs, is evaluated using
Te(ρψ = 0.95) ≈ 0.1 keV.
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PT / NT

POhm [kW] 195
Ip [kA] 170
B0 [T] 1.44
κ 1.5
δtop 0.22/0.25
δbot 0.32/-0.34
q95 4.2 /3.9
τE [ms] 22 /28
H98y2 0.87 /1.0
βN 0.83 /1.0
Zeff 2.0 /2.4

Tab. 1: Discharge
parameters of the
matched NT/PT
pair.
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Fig. 2: Edge profiles acquired over a stationary phase
t ∈ [1.0, 1.5]s: (A) Turbulence (Er × B) velocity from
DBS, (B) impurity (C6+) ion temperature from CXRS,
(C) density and (D) electron temperature from TS. Fits
are overlaid to guide the eye; for Ti, markers also show the
binned weighted average and standard deviation.

for a few representative probing frequencies. The
suggested reduction of ion-scale edge turbulence in NT
appears consistent with previous experimental findings
for matched NT/PT profiles [17, 51] and the modeling
results [21–26, 28] mentioned earlier. Further analyses
are foreseen to assess how systematic the trend is and
how it correlates to differences in the Er profile.

4. Towards higher performance

Next, we investigate how the Er comparison in NT vs.
PT extends towards higher performance, which is more
representative of conditions in future reactors. The
NT equilibrium is shown in Fig. 5-I. Notably, it has a
fully developed negative triangularity, δ ≈ −0.5, and
unfavorable B×∇B drift. Subsequent results suggest
that even with an unfavorable B×∇B direction—a
configuration usually associated with a shallow edge
Er in L-mode [39, 49, 52]—NT maintains a sharp Er
well along with good L-mode performance.

At fixed auxiliary heating power (PNBI = 850 kW)
delivered by a co-current NBI beamb, the NT
scenario is confronted both to its mirrored PT L-
mode counterpart (Fig. 5-II), and to a PT H-mode
discharge (Fig. 5-III) with favorable B × ∇B drift.
While the PT L-mode scenario is useful for isolating
the effect of triangularity, the PT H-mode provides

b Note that since Ip < 0 in the PT H-mode and Ip > 0 in the
NT and PT L-mode discharges, different neutral beam sources
are used (NBI-1 and NBI-2, respectively), possibly biasing the
comparison.

a representative, reactor-relevant reference to help
situate the NT L-mode. The externally controlled
parameters of the PT H-mode are not exactly identical:
Its geometry and the signs of both Ip and B0 differ
from the NT/PT L-mode cases, but the magnitudes of
δ, Ip and B0 are consistent. The discharge parameters
are summarized in Tab. 2. The corresponding kinetic
profiles are displayed in Fig. 6.c

The PT H-mode exhibits quasi-regular type-I
ELMs, while the other two discharges are entirely
ELM-free, consistent with L-mode. Moreover, the PT
H-mode features a pronounced pedestal in ne and Te
(Fig. 6b–c) which sets it apart from the L-mode cases.
The NT discharge displays an L-mode-like edge density
profile, but with respect to the PT L-mode, the NT
edge temperature is notably higher, both in terms of
Te—in line with the trend observed in DIII-D [30], as
well as Ti. Judging by its kinetic profiles, and by the
confinement metrics listed in Tab. 2, the NT scenario
shows an intermediate performance between the PT
L- and H-mode. Yet, due to markedly different edge
conditions—notably in density—any comparison of Er
or confinement level between L- and H-mode remains
inherently limited. Furthermore, the higher overall
density in the present H-mode tends to overstate its
performance relative to the L-modes.

The edge v⊥ profiles are shown in Fig. 7 (a). As

c Owing to the lack of CXRS data in #85890 (PT L-mode), the
Ti profile (Fig. 6) and confinement metrics τE , H98y2 and βN
(Tab. 2) are taken from an equivalent discharge phase in #84932
(t ∈ [0.65, 0.8] s), which lacks usable DBS data.
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Fig. 3: (a-b) Turbulence Er×B velocity and (c-f) edge
kinetic profiles for equilibria close to those in Fig. 1 but
with auxiliary heating: NBI (left column) and ECRH
(right column), using higher power in PT for a better
match of the electron kinetic profiles. Due to missing
CXRS data in this interval, Ti profiles are omitted for
#81781.

anticipated, the NT discharge exhibits a deeper well
compared to its L-mode PT counterpart, consistent
with the results of Sec. 3. The associated Er×B shear
around ρψ ≈ 0.95–0.98 is visibly stronger in NT. In the
PT H-mode, the low turbulence level and steep density
pedestal limit the usable DBS data to a narrow radial
range near the well minimum, preventing an assess-
ment of the edge velocity shear from DBS alone. We
therefore resort to a complementary estimation of the
outer core Er from the C6+ radial force balance. Its
profile is displayed in Fig. 7b, along with the DBS data
which is expressed in terms of Er = v⊥B and mapped
to the OMP. The consistency between the two Er es-
timations in the L-mode cases lends confidence to the
analysis procedure. The jump in Er in the PT H-mode
between ρψ ≈ 0.95 and 1 (Fig. 7b) indicates a strong
shear layer—as expected for H-mode—coinciding with
the steep region of the pe pedestal (Fig. 7c). Overall,
we conclude that, in the NT discharge, the Er well
depth and associated velocity shear lie in between the
PT L-mode and H-mode. Under favorable B×∇B drift,

the L-mode Er well is expected to deepen further [39,
49, 52], possibly bringing the NT well depth closer to
H-mode; this will be explored in future work.

5. Summary and conclusions

We have investigated the effect of triangularity on
the edge Er well in TCV. In carefully matched
NT/PT Ohmic discharges, NT unambiguously displays
a deeper Er well accompanied by better confinement
compared to its PT counterpart. The trend persists
upon moderate auxiliary heating using ECRH or
NBI. Further, in a higher performance scenario with
stronger shaping, a remarkable L-mode Er well is
observed in NT despite unfavorable B ×∇B drift.
The correlation observed between stronger Er × B
shear and higher confinement suggests a causal link
consistent with the turbulence stabilization paradigm
by sheared flows [32, 33], strengthening the picture of
reduced turbulent transport in NT. Our study confirms
the distinct behavior of the NT edge [30] now also
in terms of the Er × B flow—a key element to a
better understanding of edge transport and overall
confinement in tokamaks. These findings call for
additional modeling and experiments to identify the
underlying mechanism. Possible contributors to the
Er well enhancement in NT that merit further study
include ion orbit losses [53], edge intrinsic rotation [54–
56] and Zonal Flow drive.
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# 82659 85890 81174
t window [s] [1.2,1.3] [0.8,0.9] [1.2,1.4]
PNBI [kW] 850 850 850
Ip [kA] +150 +150 −150
B0 [T] +1.44 +1.44 −1.44
κ 1.35 1.48 1.51
δ −0.49 0.52 0.48
q95 4.0 5.7 5.1
τE [ms] 8.5 6.6 14
H98y2 0.98 0.64 1.2
βN 1.5 1.1 2.4
Zeff 2.2 1.3 2–2.3

Tab. 2: Overview of main discharge parameters.4
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