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We study the drift wave: this is an electrostatic instability linked to the presence of an
electron density gradient inside a magnetized plasma.

We first introduce the plasma diamagnetic drift due to density or temperature
gradients.

Using a basic linear fluid model, we study how this instability can propagate in the
plasma in the direction perpendicular to the magnetic field and to the density gradient.
The propagation phase velocity involves the electron diamagnetic velocity.

In order to describe the unstable nature of the mode, the model must include a
phase shift between the potential and the electron density. We study the effect of this
phase shift on the fluctuation behavior. The physical meaning of this phase shift is
briefly introduced.

The derivative notations are simplified. For the spatial partial derivative: @ng—x ,

and for the time derivative: dtzd— :

dt
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1 The Diamagnetic Drift velocity

We introduce the diamagnetic drift due to density or temperature gradients inside a
magnetized plasma.

1.1 The graphical description

The diamagnetic drift differs from the other main drifts in magnetized plasmas (ExB
drift, or magnetic B field curvature or gradient drift): it does not modify the particle
cyclotron motion: the particle guiding centers still follow the magnetic field lines. The
diamagnetic drift is the result of a particle velocities imbalance on the scale of the
Larmor radius, for a given position.
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In the presence of a species density gradient ?nao , as the density of particle

guiding centers is not uniform around a given position, the particle mean velocity .«
at this position is non-zero:

this mean velocity is along the direction perpendicular to the magnetic field and to
the density gradient. This mean velocity direction depends on the most numerous
particles: those whose guiding center is located where the particle density is higher.

In the presence of a particle species temperature gradient VTGO , as the mean
thermal velocity is diﬁereanor the guiding centers around a given position, the particle
species mean velocity Ur« is non-zero: the direction of the mean velocity
corresponds to that of the particles whose guiding center is on the side of the largest
thermal velocities.

This drift velocity depends on the species thermal velocity, u,, , on its mean
Larmor radius Pcr« and on the pressure gradient.

1.2 The fluid model approach

In order to introduce this diamagnetic drift velocity, we use a fluid description of a
magnetized plasma equilibrium with a pressure gradient (whether it is linked to a
density gradient or a temperature gradient).

The species 0 momentum conservation equation, for a magnetized plasma with no
electric field, is:
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a N - —
at“+u Vi, |=n,q,u,XB,—V P,

For a statlonary state the expression simplifies at the force balance:

Ny o Uy, ><B VP =0

This equation does not depend on the parallel part of the fluid velocity. The parallel
velocity does not the pressure gradient : the parallel part of the diamagnetic velocity is
null:

u, =0
The|| relation implies that the pressure gradient should be perpendicular to the
magnetlc field.
BLVP
if we multiply both parts of the equation by X B and using:
(axb)xe=(a.¢)b—(b.¢)a
The particle velocity is:
i, =— VP,xB,
Neqa B,
The pressure expression is:
P,=y.n. kT,
with, for the electrons, ye—l and for monatomic ions, y,=3 , this velocity is:

- Y(xk T VPQ
Up,= ><
q.B, P, Bo

It can also be expressed using particle mean parameters :

n,m,

VP,
MPOL uTocch(x P BO (11)
where :
—_ y(kaT(x
uToc_ " ’
_uT(x
cha_U)ca
and
_an()
W=7 -

a

This velocity is in the direction perpendicular to the magnetic field and the pressure
gradient as described graphically.

2.a Gradient length

The velocity expression introduces a length commonly called the gradient length.
For any 1D function of a position f(x) , the gradient length is defined as :
=t
d.f
or :
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The gradient length can be estimated by the logarithm of the function, by estimating
over what length the function logarithm varies by addend 1 . It can also be estimated
directly on the graph of the function, by estimating over which length the density varies
by a factor € (i.e.about 2.7 ).

For a 3D field parameter, such as pressure, the gradient length becomes :
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The steeper the gradient is, the shorter the gradient length is.
Diamagnetic velocity expression
The diamagnetic velocity modulus has the form :
_ YoksT,
B qoBolp,
The diamagnetic velocity is larger for the more energetic particles.

Another equivalent expression is

_ pcth(x
o

neQ

Up, (1.2)

Z/lP tha

ZPO(

The pressure gradient length is generally much larger than the particle Larmor
radius (especially for electrons): the diamagnetic velocity is much lower than the
thermal velocity of the particles.

1.3 The kinetic description

The fluid description is simple and brings out the diamagnetic velocity. but it is
artificial : it needs a equilibrium assumption. The diamagnetic velocity can be directly
deduced from the particle velocity distribution : this is the kinetic description.

The guiding center distribution
This is a second approach to evaluate the diamagnetic velocity with a plasma kinetic
description. This evaluation is more complex, but it needs no equilibrium assumption.
The particle behavior depends on the particle guiding center invariant position, X .

The guiding center position and the particle position X are linked by the particle
velocity as a consequence of the particle cyclotron motion:
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Vy
X=x+g

Axial guiding center density profiles nga(X) and temperature profiles TG(X) are
steady state.

We note fga(X, 75) the particle distribution function, expressed as a function of the
position of the guide center :

2
—mg,v

nga(X)eszT“(X) (1.3)

3/2
mg

2k, T, (X)

feal X, V)=

Around the guide center, the distribution of particle velocities is Maxwellian, with
temperature TG(X) :

We assume the characteristic gradient length for the density L,,={(d In(n,,))""

and for the temperature L. ,=(d_In(T,))”" are long compared to the Larmor radius
(i.e. the gradients are small) :
pcoancx<<1 et pcaLTa<<1
The particle distribution function fa(x, H) expressed as a function of the particle

position x depends on the guiding center distribution function and the cyclotron
motion around the guiding center:

- Vy o
f()(x('x’v):fgoc(x-i-(l)—cya’ V)

The value is approximated by a Taylor series, from the guiding center distribution
function.

The particle distribution function as a function of the particle position is :
N N LV
fOoc('x’ v):fgot('x’ v)+8ngoc(x’ V) W

The relation between the particle and guiding center distribution functions depends
on the density and temperature gradients:

) (1.4)

ca

1 2
N MgV 3 -
axfgoc(x’ V): Xmn(nga)+Xmn(T0L) m_j fga(x’ V) (1.5)

Because of these gradients, the particle distribution function is no longer Maxwellian.

Particle density
The species O density is :

nO(x(x):f d3§f0a(x’H)
or:
1%

3> - R -
nOa('x):f d vfg(x(x’v)-i-f d vaxfga('x’ V)U)
Since the second integrated function is antisymmetric in vV, , the second term is
zero.
The particle density is identical to the guiding center density profile:

y

co
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Mo (X)=1,,(x) (1.6)

Mean drift velocity

Because of the density or temperature gradients, the species & mean velocity at
any position is non zero : this is the diamagnetic drift.

sal )= [ 55 foolx, H)

or:

vy (x ——fd3"_’ (X,7 +—_fd3_"'8nga(X v)(;;

ca

Because the first integrated function is antisymmetric with respect to the speed, the
first term |s zero. For the second term, the function under the integral following the

directions € and e is also antisymmetric. It remains :

1 2
Tmocv 3
kT, 2

N 1
Voalx)=5— [ dvy|dyIn(ng,)+dyIn(T,)
since for a Maxwellian:
1 1
ol vl e [ dvif=s,

the mean velocity is :

fgoc(x’v)(x)?) g

Vil x)=ldyIn (g, 4 In (7)) 2

y

Since the pressure for the species O is:
Pa:nch kBToc

Its gradient is:
VI-)oc:n()oth Tot(Xmn (n0a)+dX ln (T(x))g

X

The drift velocity is a function of the pressure gradient :

. -V P,AB, 1.7
Viulx))= : )
doMoa By
This velocity, defined from the pressure gradient, is the diamagnetic drift of the

species O . Unlike other drifts ( EO/\BO or VBO/\BO ) , this drift does not concern
the guiding center trajectory, but is a collective effect.

The sign depends on the charge sign: the ionic and electronic diamagnetic drifts
have opposite signs.

The Diamagnetic Drift velocity 7



2 The simplified drift wave linear
fluid model

2.1 Instability linear fluid model description

1.a Electrostatic instability in a magnetized plasma

We study the electrostatic drift instability in magnetized plasmas. We S|mpI|fy the
geometry to a "slab" reference frame : a 3D Cartesian reference frame (e € eq))

X’ y’
—

in which the plasma parameter mean values vary only along 1 direction (here e, ).
The magnetic field is uniform, along é'q) ;

B=B,,é, .
The magnetic field magnitude is of the order of 0,17 .

The magnetic field curvature and gradient, always present in toric plasmas, are not
taken into account in this very simplified model.

The plasma, created from a noble mono-atomic gas (here Argon) is a cold plasma :
it is only partially ionized and constituted with 2 charged species : the electrons ¢ ,
and only one positive ion species, ;"

The electron temperature is of the order of 1el , The ions remain at the ambient
temperature. The electron density remains below 10" m™ . In these conditions, the
plasma does not generate an intrinsic magnetic field.

We consider only electrostatic instabilities : the magnetic field remains constant. The
plasma potentlal ®1 varies. The electric field is only function of the electric potential :

1= chl

1.b Perturbative description

We use a perturbative description to study this instability. We consider the instability
is only a weak perturbation on the plasma density.

First order development
The electron density is the sum of steady state mean part, and the fluctuating part:
ne(7’ t>:ne0(7>+ne1(7’t)
The time mean fluctuating part is null :
<nel<?’t)>t:O

The fluctuating part standard deviation is much smaller than the mean value :
—_ 2 —_
\/<nel(r’t) >t<<n80(r)

Equation linearization

The equation describing the plasma dynamics is approximated with limited Taylor
development with the perturbation.

The development 0" order corresponds to the steady state plasma with spatial

8 The simplified drift wave linear fluid model



variations but with no time fluctuations.

We assume the perturbation is small compared to the time mean values. We
introduces the development 1° order. Once the 0" order is subtracted from the 1% order
equations, the linear terms of the equation only remains.

1.c A single Fourier mode

Due to the plasma dynamics equations, The eigenvalues of such equation systems
are Fourier modes. The eigenvalues are monochromatic electrostatic waves with the
wave vector k and the angular frequency ® . For the simplest cases, the
perturbation wave vector is perpendicular to the magnetic field lines (along €. ) to the
plasma potential and electron density gradients (here along e_; ) :

k=k,e,
In order to simplify the expressions, we use the wave complex notation. All

fluctuating parameters, for the 1% order, have an expression similar to the electron

density one :

nel (?’ t):rﬁel i(kyy_wt)

For a single Fourier mode, the fluctuation spatial gradient has a linear expression:

Vn,=ik,n,e,

The fluctuation time derivative also has a linear expression:
0 .
Ene 1=——1wn,,

Fluctuation growth rate
For more complex linear models, the fluctuation angular frequency may include an
imaginary part :
W=Wgr+iYy
The fluctuation expression is more complete:

nel(r,t):nelewel( y o)

In this case, the mode magnitude varies exponentially with time :
”61(7,f)|=”l?16yt

The angular frequency imaginary part, ¥ , is the wave magnitude growth rate. The
growth rate sign determines the wave stability nature. If ¥ est positive, the wave

magnitude increases exponentially : the mode is unstable. If ¥ est negative, the
magnitude decreases exponentially.

2.2 The propagation model

We restrict the study to a drift mode linked to a density gradient. The ion
temperature 7T and the electron temperature 7. is uniform.

The simplified drift wave linear fluid model 9



2.a The graphical description of the propagation
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Iso-density

The magnetic field B is along &, : Eq)o .

The electron density gradient % n,, isalong e, .

The electron density perturbation is along Ey , perpendicular to the magnetic field
and the electron density gradient.

The perturbation distorts the plasma iso-density curves. Density bumps ( 72.1>0 )
correspond to over-densities and dips ( 7.1<0 ) to low densities along the
perturbation.

Since the plasma potential variations have the same sign as the electron density
variations (because of the balance between the pressure and electric forces on the
electron), the potential is positive ( ©1>0 ) in the electron density bumps, and
negative ( ©1<0 ) in the dips.

These plasma potential variations induce the formation of an electric field Eyl
along the perturbation mode wave vector Ey direction. The field Evl orientation
reverses between density bumps and dips. Because of the the magnetic field, this
electric field induces a plasma drift velocity ﬁE:IXng , in the direction of the density
gradient. This drift is also alternated along Ey between the bumps and the dips.

This alternating drift orthogonal @otion along the perturbation results in the iso-
density curve displacement along k, , in the direction of the electron diamagnetic
velocity U :the mode propagates.

2.b The linear fluid model
A basic fluid model helps to obtain a drift mode propagation velocity expression.

The density gradient Vneo is along €. . The gradient magnitude is 0,79 .

Electrons are characterized by their density n, , their temperature 7', (the
temperature variations are neglected), the plasma potential is @ . The ions have the

10 The simplified drift wave linear fluid model



same density as electrons. In this simplified model, only ion velocity #; differs from
electrons.
The instability is described as a linear (1 order) perturbation of the equilibrium. The
parameters are written as the sum of their equilibrium value, plus fluctuations:
n (7, t)=n,(7)+n, (7,1)
The fluctuations are restricted to one mode along éy :

nel(;:’ t):ﬁel ei(kyy_mt)

In order to describe the wave propagation, we first describe the electron dynamics.
The wave angular frequency ® is small compared to the electron plasma frequency,
Wpe : in the equation on the electron dynamics, their inertia ( m,d, i, ) is neglected.
At any time, locally, the electrons reach a Boltzmann equilibrium. This equilibrium
assumes that the electrons circulate freely between the low potential energy zones and
the high potential energy zones, despite the magnetic confinement.
The electron density depends only on the electric potential energy ( ¢,>0 is the

elementary charge) :

q.9
— kBTe
neO+nel_neOe
The perturbative development first order is:
_qe(pl
nei= kBTe )
or:

_kyT,
_qeneo el

The potential varies like the density, along _éy . The electric field El linked to this
potential is also along 'éy . In the presence of the magnetic field B, , the electric

U (2.1)

field E1 induces the ion oscillating motion due to the ExB drift HEZIXPTO

. _EXxB,
U= Bz
00
this drift is along €, :
. P,
U =—ik, —
ix1 qu)o

For the ii)n dynamics, we consider the continuity equation :
0,n+V .(n,ii,)=0

At the 1 order, the ion continuity equation is :
—iWn, +U; 0,n,0=0

We take into account the expression found for the ion velocity:

_ ¢
wnel——ky?:oaxneo (2.2)

We obtain 2 different linear equations between the mode parameters %1 and n,, |,
(2.1) and (2.2). They are multiplied:

The simplified drift wave linear fluid model 11



wn __k kBTeaanO n
(pl el y quq)OneO 17%1

The solutions with non zero %1 and #n,, , must satisfy the equation:

kpT, Oin.o
yqu¢() U

This is the wave dispersion relation, linking the angular frequency ® to the wave
number ky . Their ratio corresponds to the mode propagation velocity.

n=—=k

_Q_ kBTe axn'e()

U=k, = 4By 1 (2.3)

This velocity is the electron diamagnetic velocity, in the case of a density gradient,

with no temperature gradient ( ¢,>0 elementary charge) :
_ —kgT, O, Mg
ne” g, B¢0 N,
The vector expression for the phase velocity is:
k,T, &

i,=i,,=—"VnXB
6=l = e VX By (2.4)

u

—

If in the plasma, a mean electric field on the volume E

plasma is convected by the global ExB velocity:
. _ExXB,
Uppo— B,
The ExB velocity acts as a mode convection velocity. The drift wave phase velocity
is then:

-

MQ): une+uExB()

, is also present, all the

2.3 Conditions for mode growth
3.a Graphic Description

X Z}q)o
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With the previous basic model, it is not possible to conclude on the stability of the
drift wave: the model only describes the mode propagation.

In order to describe the mode stability characteristic, it is necessary to take into
account the ion inertia: because of their inertia, the ions have a drift velocity along the

gradient direction €_ which is not exactly the ExB drift velocity described above. The

velocity difference between ions and electrons then creates a slight polarization in this
velocity difference direction. The plasma potential @ is modified. It is no longer in
phase, but lagging behind the density 7.1 . Because of this delay, the oscillating ExB

drift velocity along €, , pushes the iso-density bumps and dips further aside: the wave

is amplified. The mode propagation velocity is also modified: it is slower than the
electron diamagnetic velocity.

3.b Effect of the phase shift between the potential and
the density on the mode in the fluid model
We consider the equations between the plasma potential ¥1 and the density
fluctuation n,, from the above fluid propagation model.
In equation (2.1) , the hypothesis that potential and density are in phase :
k,T,
cPlzm el
is replaced with an arbitrary phase shift ¢,, between the potential ¢¥1 and the
density n,, :
kyT, i¢,,
= € el
q.M.o
Since the wave time phase decreases with time ( ¢ ®? ), the delay of the potential
relative to the density corresponds to a positive phase shift : 0<(1)ncp<ﬂ: :

@,

The second equation between ¥1 and n,, , equation (2.2), related to Elxéo

drift, is unchanged:
_ @1
wnel__kyB_(poﬁxneO
The 2 equation combination modifies the dispersion relation. The mode angular
frequency becomes complex :
kBTe axneO eiq)ncp
y QeB(p() N,

The wave phase velocity is smaller than the electron diamagnetic velocity:
W

_Yr _
Uy= , =U,,COSP,, .

W=wytiy=—k

b

In the presence of a non-zero mean electric field £
E cross B drift :
I_’Zq):ﬁnecosq)ncp-l-izExBO
The growthrate Y is:
y:kyunesinq)mp
If the phase shift ¢, is positive, corresponding to the potential delay relative to the
density, the growth rate ¥ has the same sign as Wr : the mode grows in the

, » the velocity is modified by the
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propagation direction.

The larger the phase shift ¢,, is (below 7/2 ), the larger the growth rate Y is
and the smaller the mode phase velocity Vv, is compared to the electron diamagnetic
velocity Uy, .

This basic model only describes the effect of the phase shift between the potential
and the density on the mode propagation and the mode growth.

But this model does not give the physical origin of the phase shift. A further
description is needed.

14 The simplified drift wave linear fluid model



3 Drift Wave Linear Fluid model with
dissipation

The phase shift between the plasma potential and the electron density appears
when the collisions between the ions and the electrons along the magnetic field lines
are taken into account. These collisions generate a delay between the electron density
and the potential. A linear fluid model including the dissipation mechanism provides an
estimate of the wave growth rate.

1.a The parallel current role

The fluid model is simplified: we consider a single species fluid model.

Because of the quasi-neutrality, the density is common to the ions and the electrons
on the instability scale:

n=n=n,
The fluid describes the ion dynamics:
U=,

1

This fluid velocity is in the first approximation the ExB drift velocity, common to the
ions and the electrons:

Drift Wave Linear Fluid model with dissipation 15



. EAB, .
u.~ ~Uu
! B(|)0 ¢

Nevertheless at the second order, a difference can appear between the 2 species
velocities. This difference generates an electric current

i=gon(i i)
The conditions are the same as before. The uniform magnetic field B, is along ¢,

-

t B,, - The density gradient 6”0 is along €, .
The fluctuation is perpendicular to the gradient. Part of it is parallel to the magnetic
field :
n(7,t)=7,e
The dissipation mechanism is a resistivity phenomenon. The resistivity M is
proportional to the collision frequency of electrons on ions Vei :
mevei
n—= p
ane
We apply the generalized Ohm's law, on the ion cyclotron motion scale : the mode
angular frequency ® is small compared to the ion cyclotron frequency © <0,
EvixB=nj+i (xE-VP,)
Projected on the direction parallel to B, the generalized Ohm's law is written :

_ . . kBTe n
Eyi=mjo—ik, q. 1, (3.1)

J (kyy+k¢z¢—(1)t)

The electric field is no longer directly proportional to density fluctuations. The ohmic
part may induce a delay between plasma potential and the plasma density.
In the perpendicular direction, on the scale of ion motion, the fluid velocity is due to

the drift effect ExE :

. EXB,
u. =
X BQZ)()
The electric field arises from a potential EI:—V ¢, - The projected velocity along
the direction of the gradient, € is:
Eyl _ik)(p
Uy n»—=B,,— B

) )

Along the parallel direction, €, , E_. also arises from the electrostatic potential:

z Z]

. k
We combine the two equations (3.1) and (3.2) to eliminate £ :
. . kgT, T4
k.Byou, =k, n]qn_lkq)%n_o (3.3)

The fluid (ions + electrons) momentum equation is written:
I’lomia,a:—kB Tevnl

16 Drift Wave Linear Fluid model with dissipation



Applied along the direction parallel to BT,)O :
—itonym;uy, =—ik,kgT, n, (3.4)
The ion mass conservation is written :
8,n+§.(nb_[,-)=
Because of the gradient and fluctuation directions, the 1° order terms are :
—iwn+0,ngu+ikynou,; =0 (3.5)
By incorporating the equation (3.4) linking 441 to 71 in this equation (2.11), we
obtain a relation between 7y and U, :

ikokyT,
wm,;

[—

ny=0,NyU,, (3.6)

We use this relation to simplify the equation (3.3), in order to obtain a relation
between U, and J¢1 :

wkyu,, k,nm .
1= Sy Ui=%.8,, Jor (3.7)
This relation introduces the ion acoustic velocity :

[’ T,

and the electron diamagnetic velocity :
kT,
u. =

ne - qe B(l)()ln
The electron diamagnetic velocity can also be expressed using the ion acoustic
velocity:

—_ CS pS
Upe— ln
This velocity expression involves Ps , the ion acoustic Larmor radius:
vimn I;EBT e
S— qe o0 3T

Since the ion acoustic Larmor radius is usually much smaller than the density
gradient length, P, <!, | the electron diamagnetic velocity is much smaller than the
ion acoustic velocity :

U, Kc,

Another relation between U,; and J¢1 is needed. We consider the fluid
momentum equation (ions + electrons) :

nomiatﬁ:fIXB_:bo_vpl
This relation is applied to both the directions perpendicular to the magnetic field :
—itonymu, =—ik, Pi+By,Jj,,
_l(l)nom yl_ lk P] B(I)ijl
We combine both the equations, multiplying the second by ik, and subtracting the
first, multiplied by ik, . This subtraction eliminates the pressure terms :
_iwmi(ikxnouyl_ikynouxl):_B¢O(ikxjxl+ikyjyl) (38)
The sum of the electric charge continuity equations, because of the quasi-neutrality,

Drift Wave Linear Fluid model with dissipation 17



induces a condition on the current:
V'fl =0
or :
V. =ik, jatik,j,+ik,j,=0
This relation simplifies the right-hand side of the equation (3.8).
—iom,(ik,ngu, —ik,nyu, )=ik,Byoj,
Moreover, the magnetic moment is an motion invariant:

_lmad
u—jB—W—cste

As the magnetic field is constant, the perpendicular velocity is incompressible :
ik,u +ik,u,,=0
This relation between U.; and Uy is used to simplify the left-hand side of the
equation (3.8). After multiplying the 2 members by —ik, | this equation is written :
ionym (ki+k)u, =B,k k,j, (3.9)
From this second relation of proportionality between .1 and J1 combined with
the equation (3.7) we deduce the dispersion relation :

kye:  m(ki+k]) w’—k,c:

This expression introduces the Alfven velocity :
__ By
Ua= VW o 11

For our typical plasmas (magnetic field of the order of (,17 , electron temperature

of the orderof eV ):
Uy>cCy |

In our case, the mode is perpendicular to the gradient : k,=0 |

Assuming that the parallel wave number of the mode is negligible :
kyu,, >k;c;

The phase velocity remains close to the electron diamagnetic velocity :
Wr~k i,

The growth rate is always positive :
_m Ky,

Y Wo kqai uzA

In this model, the drift mode is unstable, provided there is a sufficiently small
component parallel to the magnetic field.

This model shows, physical effects along the parallel direction implies the drift mode
instability. The growth rate increases indefinitely with no limit with the parallel and
perpendicular wave numbers : this model is not able to give the frequency range limits
for this instability.

18 Drift Wave Linear Fluid model with dissipation



4 Annexes

4.1 Fluctuation spatial characterization

Probe punctual time measurements give the time properties of the plasma
fluctuations. In order to determine the spatial properties, several punctual
measurements are necessary.

Ya
AT T + 1
P
yo‘” """"""""""
A —— X
Xo

The cross-correlation or the cross-spectrum between the signals of 2 spatially
spaced probes give these properties for the direction between them.

In order to characterize 2D fluctuation mode, we consid_}er only one Fourier mode. Its
angular frequency is w,=2m f, and its wave vector is k=k.e.+k e, :
ne(x,y,t)Z%ecos(kxx+kyy—oo0t) :
The phase velocity along % is Vo=l k .
Vertical propagation
2 probes are vertically separated by the distance d . Probe 2 is located at a
position (xo, yo) . Probe 1 , higher, is at a position (xo, y0+d) .
The time signal on probe 2, n,,(t)=n,(x,, v, t) ,is:
nez(z‘)Zﬁecos(kxx0+kyy0—(x)0t) :
The signal on probe 1 is spatially shifted, nel(t)zne(xo, y0+d,t) . SO:
nel(t)=7iecos(kxx0+kyy0—oo0t+kyd) :
This spatial shift between probes induces a phase shift between both signals:
Aj(o)=k,d =22
This can also be regarded as a time delay between both signals :
k. d
nel(t):neZ I— uy)o ) .
The signal from probe 1 lags behind probe 2 by:

1%
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k.d 4

[ A—

T.= 5, =

Vyo

This delay can be estimated by seeking the maximum of the time cross-correlation
between probe signals 1 and 2 . This method assumes the phase velocity is the
same for all frequencies present in the common signal.

The phase shift can be analyzed more finely, frequency by frequency, by the cross-
spectrum between the signals. Each signal Fourier transform includes a phase shift :

n(0)acd(w—,) 7, e’ k)

n,, ((D)OC6<U)_m0>%e€j(kxx0+kyy0+k}>d) )

The cross-spectrum between probe signals 1 and 2 is defined by:
S12(m)ocne2(w)*nel(w)
Slz(w)océ(w_wo)%iejkyd '
The cross-spectrum phase corresponds to the phase shift between the signals for
each frequency :

Aq)y((”o):ky(wo)d -
For each frequency, we can deduce ky , the vertical wavenumber :

ky((%): ALZ((DO) ,

The phase velocity depends on the wave vector component in the vertical direction:
W,
Vv 0y =—F—
yq)( 0) ky ((DO) .
Vo (000) might be specific to each frequency:
v (0g) =
YR A, (o)

If modes are present for a large range of frequencies, and if the phase velocity is
independent of the frequency, there is a linear relationship between the cross spectrum
dv,, d
dw _v_yq, '

phase and the frequency with the slope

The radial component
w
The 1D phase velocity is: qu)(ﬂ)o):m :

The delay between radially separated probe 3 and 4 (distance d )is:
k.d 4

X

T, =5, =

Vo ’
The phase of the cross-spectrum between probe signal 3 and 4 is:

_ _d
A q)x(mO)_kx((DO)d_ v (@0) W,
The radial wavenumber and phase velocity are:
Ag,(w,)
kx((DO):TO ’

v, () =
V0 A, (o)
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Since the phase velocity is inversely proportional to the wavenumber, and

7c>=kxé;+ky e"y , the relation between the phase velocity component is:
I ~_1 - 1 S - rs
, €= —¢e,t —e, (where ekzl—k ).

Vo Vie 7 Vi k
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Physical constants
k,=1,38 1072 JK~" : Boltzmann constant
h=6.62 10" Js : Planck constant
C=2,99 10°ms™" : speed of light in vacuum
£,=8.85 107" Fm™" : vacuum permittivity
u,=41 107" Hm™" : vacuum permeability
q,=1,60 10" C : elementary charge
m,=9,11 10_31kg : electron mass

2

1 q.

—15 . .
r = =2.82 10 “"m : electron classical radius
e 4 2
TTE, meC

N ,=6,022 10* mol ™" : Avogadro constant

m,=1,66 1077 kg : atomic mass unit

m,=40m,=66,4 10~ kg : Argon atomic mass Ar,,
Standard parameters

T,=273.15K : standard air temperature ( 0 °C )

P,=1,013 10’ Pa : standard air pressure

n,=2,69 10°m™ :ideal gas molecular density at T, and P,
Units

1 Torr=1221% p = 133,3 Pa : pressure corresponding 1 mm of mercury

760
leV= K=1,16 10’K

1,6 1077
1,38107%
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