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We study the drift wave: this is an electrostatic instability linked to the presence of an 
electron density gradient inside a magnetized plasma.

We  first  introduce  the  plasma  diamagnetic  drift  due  to  density  or  temperature 
gradients.

Using a basic linear fluid model, we study how this instability can propagate in the 
plasma in the direction perpendicular to the magnetic field and to the density gradient. 
The propagation phase velocity involves the electron diamagnetic velocity.

In order to describe the unstable nature of the mode, the model must include a 
phase shift between the potential and the electron density. We study the effect of this 
phase shift  on  the fluctuation behavior. The physical  meaning of this  phase shift  is 
briefly introduced.

The derivative notations are simplified. For the spatial partial derivative: ∂ x=∂
∂ x ,

and for the time derivative: d t=
d
d t .
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1 The Diamagnetic Drift velocity
We introduce the diamagnetic drift due to density or temperature gradients inside a 

magnetized plasma.

1.1 The graphical description 
The diamagnetic drift differs from the other main drifts in magnetized plasmas (ExB 

drift,  or magnetic  B field curvature or gradient drift):  it  does not  modify the particle 
cyclotron motion: the particle guiding centers still follow the magnetic field lines. The 
diamagnetic drift  is the result  of a particle  velocities imbalance on the scale of the 
Larmor radius, for a given position.

In the presence of a  species density gradient ∇⃗ nα0
,  as the density of particle 

guiding centers is not uniform around a given position, the particle mean velocity u⃗nα
at this position is non-zero: 

this mean velocity is along the direction perpendicular to the magnetic field and to 
the density  gradient.  This  mean velocity  direction depends on the most  numerous 
particles: those whose guiding center is located where the particle density is higher.

In the presence of a particle species temperature gradient ∇⃗ T α0
, as the  mean 

thermal velocity is different for the guiding centers around a given position, the particle 
species  mean velocity u⃗T α is  non-zero:  the  direction  of  the  mean  velocity 
corresponds to that of the particles whose guiding center is on the side of the largest 
thermal velocities.

This  drift  velocity depends  on  the  species  thermal  velocity, uT α ,  on its  mean 
Larmor radius ρcT α and on the pressure gradient.

1.2 The fluid model approach
In order to introduce this diamagnetic drift  velocity, we use a fluid  description of  a 

magnetized  plasma equilibrium with  a  pressure  gradient  (whether  it  is  linked to  a 
density gradient or a temperature gradient). 

The species α momentum conservation equation, for a magnetized plasma with no 
electric field, is:
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B⃗0 ∇⃗ nα 0 ∇⃗ T α0

u⃗nα u⃗T α



nα mα (∂ u⃗α

∂ t
+ u⃗α .∇ u⃗α)=nα qα u⃗α× B⃗0−∇⃗ Pα

For a stationary state, the expression simplifies at the force balance:

nαqα u⃗α× B⃗0−∇⃗ Pα=0⃗
This equation does not depend on the parallel part of the fluid velocity. The parallel 

velocity does not the pressure gradient : the parallel part of the diamagnetic velocity is 
null:

u⃗α∥=0⃗
The  relation  implies  that  the  pressure  gradient  should  be  perpendicular  to  the 

magnetic field. 

B⃗0⊥∇⃗ Pα

if we multiply both parts of the equation by × B⃗ and using:

( a⃗×b⃗)×c⃗=( a⃗ . c⃗) b⃗−(b⃗ . c⃗ ) a⃗
The particle velocity is:

u⃗Pα=
−1

nα qα B0
2 ∇⃗ Pα× B⃗0

The pressure expression is:
 Pα=γαnα k B T α

with, for the electrons, γe=1 , and for monatomic ions, γi=3 , this velocity is:

u⃗Pα=
−γα k B T α

qα B0

∇⃗ Pα

Pα
×

B⃗0

B0

It can also be expressed using particle mean parameters :

u⃗Pα=−uT αρcT α
∇⃗ Pα

Pα
×

B⃗0

B0

(1.1)

where :

uT α=√ γα kB T α

mα

,

ρcT α=
uT α
ωcα

and

ωcα=
qαB0

mα
.

This velocity is in the direction perpendicular to the magnetic field and the pressure 
gradient as described graphically.

2.a Gradient length
The velocity expression introduces a length commonly called the gradient length. 
For any 1D function of a position f (x) , the gradient length is defined as :

l x=
f

d x f

or :
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l x=
1

d x ln f

The gradient length can be estimated by the logarithm of the function, by estimating 
over what length the function logarithm varies by addend 1 . It can also be estimated 
directly on the graph of the function, by estimating over which length the density varies 
by a factor e (i.e. about 2.7 ).

For a 3D field parameter, such as pressure, the gradient length becomes :

lPα=
Pα

|∇ Pα|

The steeper the gradient is, the shorter the gradient length is.

Diamagnetic velocity expression
The diamagnetic velocity modulus has the form :

uPα=
γα k B T α

qα B0 l Pα
(1.2)

The diamagnetic velocity is larger for the more energetic particles.
Another equivalent expression is

uPα=
ρcthα

lPα
uthα

The  pressure  gradient  length  is  generally  much  larger  than  the  particle  Larmor 
radius  (especially  for  electrons):  the  diamagnetic  velocity  is  much  lower  than  the 
thermal velocity of the particles.

1.3 The kinetic description
The fluid  description  is  simple  and brings  out  the  diamagnetic  velocity.  but  it  is 

artificial : it needs a equilibrium assumption. The diamagnetic velocity can be directly 
deduced from the particle velocity distribution : this is the kinetic description.

The guiding center distribution
This is a second approach to evaluate the diamagnetic velocity with a plasma kinetic 

description. This evaluation is more complex, but it needs no equilibrium assumption.
The particle behavior depends on the particle guiding center invariant position, X . 

The  guiding  center  position  and  the  particle  position x are  linked  by  the  particle 
velocity as a consequence of the particle cyclotron motion:
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ln(ne 0)

xLne 0

a

a+1

ne0

Lne 0

c

c e

+1 ×e



X=x+
v y
ωcα

 Axial guiding center density profiles ngα(X ) and temperature profiles Tα(X ) are 
steady state.

We note f gα(X , v⃗) the particle distribution function, expressed as a function of the 
position of the guide center :

f gα(X , v⃗)=( mα

2π kBTα(X ))
3/2

ngα(X) e

−mα v
2

2 k BT α(X ) (1.3)

Around the guide center,  the distribution of  particle velocities is Maxwellian,  with 
temperature Tα(X ) .

We assume the characteristic gradient length for the density Lnα=⟨d x ln (n0α)⟩
−1

and for the temperature LT α=〈d x ln (T α)〉
−1

are long compared to the Larmor radius 

(i.e. the gradients are small) :
ρcα Lnα≪1 et ρcα LT α≪1

The particle distribution function f α(x , H ) expressed as a function of the particle 
position x depends  on  the  guiding  center  distribution  function  and  the  cyclotron 
motion around the guiding center:

f 0α(x , v⃗ )= f gα(x+
vy
ωcα

, v⃗)  

The value is approximated by a Taylor series, from the guiding center distribution 
function. 

The particle distribution function as a function of the particle position is :

f 0α(x , v⃗ )= f gα(x , v⃗)+∂X f gα(x , v⃗ )
vy
ωcα

(1.4)

The relation between the particle and guiding center distribution functions depends 
on the density and temperature gradients:

∂ x f gα(x , v⃗)=[d X ln (ngα)+d X ln(T α)(
1
2 mα v

2

kBT α
−

3
2 )] f gα(x , v⃗) (1.5)

Because of these gradients, the particle distribution function is no longer Maxwellian.

Particle density
The species α density is :

n0α(x)=∫d3 v⃗ f 0α( x , H )
or :

n0α(x)=∫d3 v⃗ f gα( x , v⃗ )+∫d3 v⃗ ∂ x f gα(x , v⃗)
vy
ωcα

Since the second integrated function is antisymmetric in vy ,  the second term is 
zero.

The particle density is identical to the guiding center density profile:
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n0α(x)=ngα( x ) (1.6)

Mean drift velocity
Because of the density or temperature gradients, the species α mean velocity at 

any position is non zero : this is the diamagnetic drift.

⟨ v⃗0α(x )⟩=
1
n0α
∫d 3 v⃗ v⃗ f 0 α(x , H )

or :

⟨ v⃗0α(x )⟩=
1
n0α
∫d 3 v⃗ v⃗ f gα(X , v⃗)+

1
n0α
∫d3 v⃗ v⃗ ∂X f gα(X , v⃗)

vy
ωcα

Because the first integrated function is antisymmetric with respect to the speed, the 
first term is zero. For the second term, the function under the integral following the 
directions e⃗x and e⃗ z is also antisymmetric. It remains :

⟨ v⃗0α(x )⟩=
1
n0α
∫d vy [d X ln (ngα)+d X ln(T α)(

1
2 mα v

2

kBT α
−

3
2 )] f gα(x , v⃗) vy2ωcα

e⃗y

since for a  Maxwellian:
1
nα
∫d v y v y

2 f α=v thα
2

et
1
nα
∫d v y v y

4 f α=3vthα
4

 

the mean velocity is :

⟨ v⃗0α(x )⟩= [d X ln (n0α)+d X ln (T α)]
kBTα

qα B
e⃗y

Since the pressure for the species α is :
Pα=n0α kBT α

Its gradient is:
∇ Pα=n0α kBTα(d X ln (n0α)+d X ln (T α)) e⃗x

The drift velocity is a function of the pressure gradient :

⟨ v⃗0α(x )⟩=
−∇ Pα∧ B⃗0

qαn0α B0
2

(1.7)

This  velocity,  defined from the pressure  gradient,  is  the  diamagnetic  drift  of  the 

species α . Unlike other drifts ( E⃗ 0∧B⃗0 or ∇⃗ B0∧ B⃗0 ) , this drift does not concern 

the guiding center trajectory, but is a collective effect. 
The sign depends on the charge sign: the ionic and electronic diamagnetic drifts 

have opposite signs.

The Diamagnetic Drift velocity             7



2 The simplified drift wave linear 
fluid model

2.1 Instability linear fluid model description

1.a Electrostatic instability in a magnetized plasma
We study the electrostatic drift instability in magnetized plasmas.  We simplify the 

geometry to a "slab" reference frame : a 3D Cartesian reference frame (e⃗ x , e⃗ y , e⃗ϕ)  

in which the plasma parameter mean values vary only along 1 direction (here e⃗x ).

The magnetic field is uniform, along e⃗ϕ :

B⃗=Bϕ 0 e⃗ϕ . 

The magnetic field magnitude is of the order of 0,1T .
The magnetic field curvature and gradient, always present in toric plasmas, are not 

taken into account in this very simplified model.
The plasma, created from a noble mono-atomic gas (here Argon) is a cold plasma : 

it is only partially ionized and constituted with 2 charged species : the electrons e− , 

and only one positive ion species, i+ . 

The electron temperature is of the order of 1eV , The ions remain at the ambient 
temperature.  The electron density remains below 1017 m−3 .  In these conditions, the 
plasma does not generate an intrinsic magnetic field. 

We consider only electrostatic instabilities : the magnetic field remains constant. The 
plasma potential φ1 varies. The electric field is only function of the electric potential :

E⃗ 1=−∇⃗ φ1

1.b Perturbative description
We use a perturbative description to study this instability. We consider the instability 

is only a weak perturbation on the plasma density.

First order development
The electron density is the sum of steady state mean part, and the fluctuating part:

 ne ( r⃗ , t)=ne 0( r⃗ )+ne 1( r⃗ , t )
The time mean fluctuating part is null :
⟨ne 1( r⃗ , t )⟩t=0

The fluctuating part standard deviation is much smaller than the mean value :

√⟨ne 1( r⃗ , t )2 ⟩t≪ne 0( r⃗ )

Equation linearization
The equation describing the plasma dynamics is  approximated with limited Taylor 

development with the perturbation.
The  development 0th order  corresponds  to  the  steady  state  plasma with  spatial 
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variations but with no time fluctuations.
We  assume  the  perturbation  is  small  compared  to  the  time  mean  values. We 

introduces the development 1st order. Once the 0th order is subtracted from the 1st order 
equations, the linear terms of the equation only remains.

1.c A single Fourier mode
Due to the plasma dynamics equations, The eigenvalues of such equation systems 

are Fourier modes.  The eigenvalues are monochromatic electrostatic waves with the 
wave  vector k⃗ and  the  angular  frequency ω .  For  the  simplest  cases,  the 
perturbation wave vector is perpendicular to the magnetic field lines (along e⃗ z ) to the 
plasma potential and electron density gradients (here along e⃗x ) :

k⃗=k y e⃗y
In  order  to  simplify  the  expressions, we  use  the  wave  complex  notation.  All 

fluctuating parameters,  for the 1st order,  have an expression similar to the electron 
density one : 

ne 1( r⃗ , t)=~n e1 e
i (k y y−ω t )

For a single Fourier mode, the fluctuation spatial gradient has a linear expression:

∇⃗ ne1=i k y ne 1 e⃗ y

The fluctuation time derivative also has a linear expression:
∂
∂ t

ne 1=−iω ne 1

Fluctuation growth rate
For more complex linear models,  the fluctuation angular frequency may include an 

imaginary part : 
 ω=ωR+i γ
The fluctuation expression is more complete: 

ne 1( r⃗ , t)=~n e1 eγ t e
i (k y y−ωR t )

In this case, the mode magnitude varies exponentially with time :

|ne 1( r⃗ , t )|=~ne1 eγ t

The angular frequency imaginary part, γ , is the wave magnitude growth rate. The 
growth rate sign determines the wave stability  nature. If γ est  positive,  the wave 
magnitude  increases  exponentially :  the mode  is  unstable.  If γ est  negative,  the 
magnitude decreases exponentially.

2.2 The propagation model 
We  restrict  the  study to  a  drift  mode  linked  to  a  density  gradient.  The  ion 

temperature T i and the electron temperature T e is uniform.
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2.a The graphical description of the propagation

The magnetic field B⃗ is along e⃗ϕ : B⃗ϕ 0 .

The electron density gradient ∇⃗ ne0 is along e⃗ x .

The electron density perturbation is along e⃗ y , perpendicular to the magnetic field 
and the electron density gradient.

The perturbation distorts the plasma iso-density curves. Density  bumps ( ne1>0 ) 
correspond  to  over-densities  and  dips ( ne1<0 )  to low  densities  along  the 
perturbation.

Since the plasma potential variations have the same sign as the electron density 
variations (because of the balance between the pressure and electric forces on the 
electron),  the  potential  is  positive  ( φ1>0 )  in  the  electron  density  bumps,  and 
negative ( φ1<0 ) in the dips.

These plasma potential  variations induce the formation of  an electric  field E⃗ y 1

along the  perturbation  mode  wave  vector k⃗y direction.  The  field E⃗ y 1 orientation 
reverses between density bumps and dips.  Because of the the magnetic field,  this 
electric field induces a plasma drift velocity u⃗ E⃗ y 1×B⃗ϕ0

, in the direction of the density 

gradient. This drift is also alternated along k⃗y between the bumps and the dips. 

This  alternating drift  orthogonal  motion  along the  perturbation results  in  the iso-
density curve displacement along k⃗y ,  in  the direction of  the electron diamagnetic 
velocity u⃗ne : the mode propagates.

2.b The linear fluid model 
A basic fluid model helps to obtain a drift mode propagation velocity expression.

The density gradient ∇⃗ ne0  is along e⃗x . The gradient magnitude is ∂ x ne 0 .

Electrons  are  characterized  by  their  density ne ,  their  temperature T e (the 
temperature variations are neglected), the plasma potential is φ . The ions have the 
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Iso-density

n1>0

n1<0

φ1>0

n1>0
φ1>0

φ1<0

k⃗y

e⃗x
e⃗y

B⃗ϕ 0

e⃗ϕ

∇⃗ ne0

φ1>0

φ1>0

φ1<0

u⃗ne

B⃗ϕ 0

E⃗ y 1

E⃗ y 1

u⃗ E⃗ y 1×B⃗ϕ0

u⃗ E⃗ y 1×B⃗ϕ0

∇⃗ ne0



same density as electrons.  In this simplified model, only  ion velocity u⃗i differs from 
electrons.

The instability is described as a linear (1st order) perturbation of the equilibrium. The 
parameters are written as the sum of their equilibrium value, plus fluctuations:

ne ( r⃗ , t)=ne 0( r⃗ )+ne 1( r⃗ , t )
The fluctuations are restricted to one mode along e⃗ y :

ne 1( r⃗ , t)=~n e1 e
i (k y y−ω t )

In order to describe the wave propagation, we first describe the electron dynamics. 
The wave angular frequency ω is small compared to the electron plasma  frequency,
ωpe : in the equation on the electron dynamics, their inertia ( me d t u⃗e ) is neglected. 

At  any  time,  locally,  the  electrons  reach a  Boltzmann equilibrium.  This  equilibrium 
assumes that the electrons circulate freely between the low potential energy zones and 
the high potential energy zones, despite the magnetic confinement.

The electron density depends only on the electric potential energy ( qe>0 is the 
elementary charge) :

ne 0+ne1=ne 0 e
qeφ1

k B T e

The perturbative development first order is:

ne 1=
q eφ1

k B T e

ne0

or :

φ1=
k B T e

qe ne 0

ne 1 (2.1)

The potential varies like the density, along e⃗ y . The electric field E⃗ 1 linked to this 

potential is also along e⃗ y . In the presence of the magnetic field B⃗ϕ 0 , the electric 

field E⃗ 1 induces the ion oscillating motion due to the ExB drift u⃗ E⃗ y 1×B⃗0
:

u⃗ i1=
E⃗ 1× B⃗ϕ 0

Bϕ 0
2

this drift is along e⃗x :

uix 1=−i k y

φ1

Bϕ 0

For the ion dynamics, we consider the continuity equation : 

∂t ni+∇⃗ .(ni u⃗i)=0
At the 1st order, the ion continuity equation is :
−iω ne 1+uix1∂x ne0=0

We take into account the expression found for the ion velocity:

ω ne1=−k y
φ1

Bϕ 0
∂ x ne 0 (2.2)

We obtain 2 different linear equations between the mode parameters φ1 and ne 1 , 
(2.1) and (2.2). They are multiplied:
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φ1ω ne1=−k y
kBT e∂x ne0

qe Bϕ 0ne0
φ1ne1

The solutions with non zero φ1 and ne 1 , must satisfy the equation:

ω=−ky
kBT e

qeBϕ 0

∂xn e0

ne0

This is the wave dispersion relation, linking the angular frequency ω to the wave 
number k y . Their ratio corresponds to the mode propagation velocity.

uϕ= ω
ky
=− kBT e

qeBϕ 0

∂xne 0

ne 0
(2.3)

This velocity is the electron diamagnetic velocity, in the case of a density gradient, 
with no temperature gradient ( qe>0 elementary charge) :

une=
−kBT e

qe Bϕ 0

∂x ne0

ne0

The vector expression for the phase velocity is:

u⃗ϕ=u⃗ne=
kB T e

ne qe Bϕ 0
2 ∇⃗ ne× B⃗ϕ0 (2.4)

If  in the plasma, a mean electric field on the volume E⃗ 0 is also present, all  the 

plasma is convected by the global ExB velocity:

u⃗ExB 0=
E⃗0×B⃗ϕ 0

Bϕ 0
2 . 

The ExB velocity acts as a mode convection velocity. The drift wave phase velocity 
is then:

u⃗ϕ=u⃗ne+ u⃗ExB0

2.3 Conditions for mode growth

3.a  Graphic Description
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φ1>0

φ1<0

φ1

ne 1

u⃗ne

B⃗ϕ 0

E⃗ y 1

E⃗ y 1

u⃗ E⃗ y 1×B⃗ϕ0

u⃗ E⃗ y 1×B⃗ϕ0

∇⃗ ne0



With the previous basic model, it is not possible to conclude on the stability of the 
drift wave: the model only describes the mode propagation.

In order to  describe the mode  stability characteristic,  it  is necessary to take into 
account the ion inertia: because of their inertia, the ions have a drift velocity along the 
gradient direction e⃗ x which is not exactly the ExB drift velocity described above. The 
velocity difference between ions and electrons then creates a slight polarization in this 
velocity difference direction.  The plasma potential φ is  modified.  It  is  no longer in 
phase, but lagging behind the density ne1 . Because of this delay, the oscillating ExB 
drift velocity along e⃗ x , pushes the iso-density bumps and dips further aside: the wave 
is  amplified.  The mode propagation  velocity is also modified:  it  is slower  than the 
electron diamagnetic velocity.

3.b Effect of the phase shift  between the potential  and 
the density on the mode in the fluid model

We  consider the  equations  between  the  plasma  potential φ1 and  the  density 
fluctuation ne 1 from the above fluid propagation model.

In equation (2.1) , the hypothesis that potential and density are in phase :

φ1=
k B T e

qe ne 0
ne 1

is  replaced  with  an  arbitrary  phase  shift ϕnφ between the  potential φ1 and the 
density ne 1 :

φ1=
k B T e

qe ne 0

e
i ϕnφne 1

Since the wave time phase decreases with time ( e−iω t ), the delay of the potential 

relative to the density corresponds to a positive phase shift : 0<ϕnφ<π .

The second  equation between φ1 and ne 1 ,  equation (2.2),  related to E⃗ 1× B⃗0

drift, is unchanged:

ω ne1=−k y
φ1

Bϕ 0
∂x ne 0

The 2  equation  combination modifies  the  dispersion  relation.  The mode  angular 
frequency becomes complex :

ω=ωR+i γ=−ky
kBT e

qeBϕ 0

∂x ne0

ne0
ei ϕnφ

The wave phase velocity is smaller than the electron diamagnetic velocity: 

uϕ=
ωR

k y
=une cosϕnφ .

In the presence of a non-zero mean electric field E⃗ 0 , the velocity is modified by the 

E cross B drift :
u⃗ϕ=u⃗ne cosϕnφ+ u⃗ExB0

The growth rate γ is :
γ=k yunesin ϕn φ

If the phase shift ϕnφ is positive, corresponding to the potential delay relative to the 
density,  the  growth  rate γ has  the  same  sign  as ωR :  the  mode  grows in  the 
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propagation direction.
The larger the phase shift ϕnφ is (below π/2 ),  the larger the growth rate γ is 

and the smaller the mode phase velocity vϕ is compared to the electron diamagnetic 
velocity une .

This basic model only describes the effect of the phase shift between the potential 
and the density on the mode propagation and the mode growth. 

But  this  model  does  not  give  the  physical  origin  of  the  phase  shift.  A  further 
description is needed.
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3 Drift Wave Linear Fluid model with 
dissipation

The phase shift  between the plasma potential  and the electron density  appears 
when the collisions between the ions and the electrons along the magnetic field lines 
are taken into account. These collisions generate a delay between the electron density 
and the potential. A linear fluid model including the dissipation mechanism provides an 
estimate of the wave growth rate.

1.a The parallel current role

The fluid model is simplified: we consider a single species fluid model.

Because of the quasi-neutrality, the density is common to the ions and the electrons 
on the instability scale:

n=ni=ne

The fluid describes the ion dynamics:
u⃗=u⃗i

This fluid velocity is in the first approximation the ExB drift velocity, common to the 
ions and the electrons:
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∇⃗ ne

φ1>0

φ1<0

φ1

ne 1

u⃗ne

B⃗ϕ 0

E⃗ y 1

E⃗ y 1

u⃗ E⃗ y 1×B⃗ϕ0

u⃗ E⃗ y 1×B⃗ϕ0

φ1

ne 1

E⃗ ϕ 1

j⃗ϕ1
k⃗ y k⃗ϕ

e⃗x
e⃗y

e⃗ϕ



u⃗i∼
E⃗ 1∧B⃗ϕ 0

Bϕ 0
∼u⃗e

Nevertheless at the second order, a difference can appear between the 2  species 
velocities. This difference generates an electric current j⃗  : 

j⃗=qe n( u⃗i−u⃗e)
The conditions are the same as before. The uniform magnetic field B⃗0 is along e⃗ϕ

: B⃗ϕ 0 . The density gradient ∇⃗ n0
is along e⃗x . 

The fluctuation is perpendicular to the gradient. Part of it is parallel to the magnetic 
field :

n1( r⃗ , t)=~n1 e
j (k y y+kϕ zϕ−ω t )

The  dissipation  mechanism  is  a  resistivity  phenomenon.  The  resistivity η is 
proportional to the collision frequency of electrons on ions νei :

η=
meνei
n0qe

2

We apply the generalized Ohm's law, on the ion cyclotron motion scale : the mode 
angular frequency ω is small compared to the ion cyclotron frequency ω≪ωci . 

E⃗+ u⃗× B⃗=η j⃗+ 1
n0 qe ( j⃗× B⃗−∇⃗ Pe)

Projected on the direction parallel to B⃗ , the generalized Ohm's law is written :

E ϕ1=η jϕ1−i kϕ
kBT e

qe
n1
n0

(3.1)

The electric field is no longer directly proportional to density fluctuations. The ohmic 
part may induce a delay between plasma potential and the plasma density.

In the perpendicular direction, on the scale of ion motion, the fluid velocity is due to 
the drift effect E⃗×B⃗ :

u⃗×=
E⃗×B⃗ϕ 0

Bϕ0
2

The electric field arises from a potential E⃗ 1=−∇⃗ φ1 . The projected velocity along 

the direction of the gradient, e⃗x is :

ux 1=
E y1

Bϕ 0
=
−i k yφ
Bϕ 0

Along the parallel direction, e⃗ z , E z 1 also arises from the electrostatic potential:

E ϕ1=−i kϕφ=
kϕ
k y Bϕ0u x1 (3.2)

We combine the two equations (3.1) and (3.2) to eliminate E ϕ1 :

k z Bϕ0ux 1=k y(η jϕ1−i kϕ
kBT e

q e

n1

n0 ) (3.3)

The fluid (ions + electrons) momentum equation is written:

n0mi∂t u⃗=−kBT e ∇⃗ n1
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Applied along the direction parallel to B⃗ϕ0 :

−iω n0mi uϕ1=−i kϕ kBT e n1 (3.4)

The ion mass conservation is written :

∂t n+∇⃗ .(n u⃗i)=0
Because of the gradient and fluctuation directions, the 1st order terms are :

−iω n1+∂ x n0 ux 1+i kϕ n0uz 1=0 (3.5)

By incorporating the equation  (3.4) linking uϕ 1 to n1 in  this  equation (2.11),  we 
obtain a relation between n1 and ux 1 :

(iω− i kϕ
2 kBT e

ωmi )n1=∂ x n0ux 1 (3.6)

We use this  relation  to  simplify  the  equation  (3.3),  in  order  to  obtain  a  relation 
between ux 1 and j ϕ1 :

(1− ω k yune
ω2−kϕ

2c s
2 )ux 1=

k y η
kϕBϕ 0

jϕ1 (3.7)

This relation introduces the ion acoustic velocity :

c s=√ kBT e

mi

and the electron diamagnetic velocity :

une=−
k BT e

qeBϕ 0 ln
The electron diamagnetic  velocity  can also be expressed  using the ion acoustic 

velocity:

une=
csρs
ln

This velocity expression involves ρs , the ion acoustic Larmor radius:

ρs=
√mi kBT e

q eBϕ 0
=√ T e

3T i
ρci=

cs
ωci

Since the  ion  acoustic  Larmor  radius  is  usually  much  smaller  than  the  density 
gradient length, ρs≪l n , the electron diamagnetic velocity is much smaller than the 
ion acoustic velocity :

une≪c s
Another  relation  between ux 1 and j ϕ1 is  needed.  We  consider the  fluid 

momentum equation (ions + electrons) :

n0mi∂t u⃗= j⃗1× B⃗ϕ0−∇⃗ P1

This relation is applied to both the directions perpendicular to the magnetic field :
−iω n0mi ux1=−i k xP1+Bϕ 0 j y 1
−iω n0mi uy1=−i k yP1−Bϕ0 j x1

We combine both the equations, multiplying the second by i k x and subtracting the 
first, multiplied by i k y . This subtraction eliminates the pressure terms :

−iωmi (i k x n0uy1−i k y n0ux 1)=−Bϕ0(i k x j x1+i k y jy 1) (3.8)

The sum of the electric charge continuity equations, because of the quasi-neutrality, 
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induces a condition on the current:

∇⃗ . j⃗1=0
or :

∇⃗ . j⃗1=i k x j x1+i k y jy 1+i k ϕ j ϕ1=0
This relation simplifies the right-hand side of the equation (3.8).
−iωmi (i k x n0uy1−i k y n0ux 1)=i kϕBϕ 0 jϕ 1

Moreover, the magnetic moment is an motion invariant:

μ= 1
2
meu⊥

2

Bϕ0
=cste

As the magnetic field is constant, the perpendicular velocity is incompressible :
i k x ux 1+i k yuy 1=0

This  relation  between ux 1 and uy1 is  used to  simplify  the  left-hand side  of  the 
equation (3.8). After multiplying the 2 members by −i k y , this equation is  written :

iω n0mi(k x
2+ky

2)ux 1=Bϕ 0k y kϕ jϕ1 (3.9)

From this second relation of proportionality between ux 1 and j ϕ1 combined with 
the equation (3.7) we deduce the dispersion relation :

ω−k y une−
kϕ

2 cs
2

ω =i
η(k x

2+k y
2)

μ0

ω2−kϕ
2 cs

2

kϕ
2 uA

2 (3.10)

This expression introduces the Alfven velocity :

uA=
Bϕ 0

√μ0 n0mi

For our typical plasmas (magnetic field of the order of 0,1T , electron temperature 

of the order of 1eV ) :
uA≫cs .

In our case, the mode is perpendicular to the gradient : kx=0 .
Assuming that the parallel wave number of the mode is negligible :
ky une≫kϕ cs

The phase velocity remains close to the electron diamagnetic velocity :
ωR∼k yune

The growth rate is always positive :

γ∼ η
μ0

k y
4u ne

2

kϕ
2 uA

2

In  this  model,  the  drift  mode  is  unstable,  provided  there  is  a  sufficiently  small 
component parallel to the magnetic field.

This model shows, physical effects along the parallel direction implies the drift mode 
instability.  The growth rate increases indefinitely  with  no limit  with  the parallel  and 
perpendicular wave numbers : this model is not able to give the frequency range limits 
for this instability. 
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4 Annexes

4.1 Fluctuation spatial characterization
Probe  punctual  time  measurements  give  the  time  properties  of  the  plasma 

fluctuations.  In  order  to  determine  the  spatial  properties,  several  punctual 
measurements are necessary.

The cross-correlation or the cross-spectrum between the signals of 2 spatially 
spaced probes give these properties for the direction between them.

In order to characterize 2D fluctuation mode, we consider only one Fourier mode. Its 
angular frequency is ω0=2π f 0 and its wave vector is k⃗=k x e⃗x+k y e⃗ y :

ne (x , y ,t )=~n e cos(k x x+k y y−ω0t ) .

The phase velocity along k⃗ is vϕ=ω0/ k .

Vertical propagation
2  probes are  vertically  separated  by  the  distance d .  Probe 2 is  located  at  a 

position (x0 , y0) . Probe 1 , higher, is at a position (x0 , y0+d ) . 

The time signal on probe 2, ne 2(t )=ne(x0 , y0 , t) , is : 

ne 2(t )=~n e cos(k x x0+k y y0−ω0 t) .

The signal on probe 1 is spatially shifted, ne 1(t)=ne (x0 , y0+d ,t ) . so:

ne 1(t)=~ne cos(k x x0+k y y0−ω0 t+k y d ) .

This spatial shift between probes induces a phase shift between both signals:

Δ ϕ(ω)=k y d=
d ω0

v yϕ

This can also be regarded as a time delay between both signals :

ne 1(t)=ne 2(t− k y d
ω0

) .

The signal from probe 1 lags behind probe 2 by:
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τ z=
k y d
ω0

= d
v yϕ

.

This delay can be estimated by seeking the maximum of the time cross-correlation 
between probe signals 1 and 2 .  This method assumes the phase velocity is the 
same for all frequencies present in the common signal.

The phase shift can be analyzed more finely, frequency by frequency, by the cross-
spectrum between the signals. Each signal Fourier transform includes a phase shift :

ne 2(ω)∝δ(ω−ω0)~ne e
j (k x x0+k y y0) ,

ne 1(ω)∝δ(ω−ω0)~n e e
j (k x x0+ k y y0+k y d ) .

The cross-spectrum between probe signals 1 and 2 is defined by:

S12 (ω)∝ne 2(ω)
∗ne1(ω)

S12 (ω)∝δ(ω−ω0)~n e
2 e

j k y d .

The cross-spectrum phase corresponds to the phase  shift between the signals for 
each frequency :

Δ ϕ y(ω0)=k y (ω0)d . 

For each frequency, we can deduce k y , the vertical wavenumber :

k y(ω0)=
Δϕy(ω0)

d
,

The phase velocity depends on the wave vector component in the vertical direction:
v yϕ (ω0)=

ω0

k y (ω0)
. 

v yϕ (ω0) might be specific to each frequency:

v yϕ (ω0)=
d ω0

Δϕy(ω0)
. 

If modes are present for a large range of frequencies, and if the phase velocity is 
independent of the frequency, there is a linear relationship between the cross spectrum 

phase and the frequency with the slope
d v yϕ

d ω = d
v yϕ

.

The radial component 

The 1D phase velocity is: v x ϕ(ω0)=
ω0

k x (ω0)
. 

The delay between radially separated probe 3 and 4 (distance d ) is:

τ x=
k x d
ω0

= d
v xϕ

.

The phase of the cross-spectrum between probe signal 3 and 4 is:

Δ ϕx (ω0)=k x (ω0)d=
d

v xϕ (ω0)
ω0

The radial wavenumber and phase velocity are:

k x (ω0)=
Δϕx(ω0)

d
,

v x ϕ(ω0)=
dω0

Δϕx(ω0)
.
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Since  the  phase  velocity  is  inversely  proportional  to  the  wavenumber,  and
k⃗=k x e⃗x+k y e⃗ y , the relation between the phase velocity component is:

1
vϕ

e⃗k=
1
v yϕ

e⃗ y+
1
v xϕ

e⃗x (where e⃗k=
1
k

k⃗ ).
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Physical constants
kB=1,38 10−23 JK−1 : Boltzmann constant

h=6.62 10−34 Js : Planck constant

C=2,99 108ms−1 : speed of light in vacuum

0=8.85 10−12 Fm−1 : vacuum permittivity

0=4 10−7Hm−1 : vacuum permeability

qe=1,60 10−19C : elementary charge

me=9,11 10−31kg : electron mass

re=
1

4π ϵ0

q e
2

meC
2=2.82 10−15m : electron classical radius

N A=6,022 1023mol−1 : Avogadro constant

mu=1,66 10−27 kg : atomic mass unit

mi=40mu=66,4 10−27 kg : Argon atomic mass Ar40
18

Standard parameters
T 0=273.15K : standard air temperature ( 0 °C )

P0=1,013 105Pa : standard air pressure

n0=2,69 1025m−3 : ideal gas molecular density at T 0 and P0

Units

1Torr= 1,013 105

760 Pa=133,3Pa : pressure corresponding 1 mm of mercury

1eV= 1,6 10−19

1,38 10−23 K=1,16 104K
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