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Introduction

A Langmuir probe is a conductor that is immersed in the plasma. We measure the
current at the probe output as a function of the probe polarization potential with respect
to the plasma potential. From this probe current-potential characteristic we can deduce
some plasma parameters around the probe. A probe plasma interaction model is
necessary to evaluate the plasma characteristics from the measurements.

Probe Measurements are intrusive: they interact with the plasma. We focus on cold,
weakly collisional plasmas. We present the effects of the magnetic field on the probe
measurement.

The first part exposes an basic model of the probe.

The second part describes the implementation of the probe measurement.

The third part exposes a probe sheath model. This model is necessary to estimate
the ion and electron flows at the probe.
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1 Elementary probe model

We first expose an elementary model of the probe immersed in the plasma in order
to describe the general behavior. Some results are given with no model. They are
described in part 3. This part exposes the interaction between the plasma and the
probe.

In order to analyze the probe current-voltage characteristic, it is necessary to
determine the ion and electron flows to the probe.

1.1 Particle flow to the probe

We consider a cold plasma, consisting of single charged positive ions ;
electrons ¢ . Interaction with neutrals are neglected.

+

and

The ion temperature is very low compared to the electronone : 7', <7, .

The probe surface is considered completely absorbing for the charged particles that
reach it (the ions are recombined on the surface).

1
U L'|'

Since the Langmuir probe potential U, is different from the plasma potential U, ,
the probe has a different effect on the plasma electrons and ions. Because of the
potential difference, over a certain distance around the probe, the quasi-neutrality of
the plasma is no longer verified: it is the sheath that surrounds the probe. If the probe
potential is lower than that of the plasma, the sheath mainly consists of ions. Electrons
dominate in the opposite case.

The particle flow reaching the probe depends on the probe shape, the sheath
thickness, the direction of the possible magnetic field.

If the probe is electrically connected to the same ground as the plasma, the

difference between the electron and ion flows reaching the probe generate an electric
current / atthe probe output.

The probe current-voltage characteristic helps to determine the ion and electron
densities, the electron temperature and the plasma potential in the vicinity of the probe.

1.a lon sheath

We are in the case the probe potential U, is lower than the plasma potential U, .

The ion current at the entrance to the sheath surrounding the probe is called the ion
saturation current /. .
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lon saturation current
This current is the product of the elementary charge ¢, by the ion flow.

The ion flow is the product of the probe collection area A, , by the ion flux. The

probe ion collection surface is the surface at the sheath boundary with the surrounding
plasma.

The ion flux is the product of the ion density at the sheath surface, 7, , by the
mean ion velocity at the entrance to the sheath v, .
By convention, the current is positive for the electron part :
l¢=—qn. v A, .

AN A

Bohm criterion on the ion sheath surface
The detailed sheath model in part 3 shows that the ions can not enter the sheath
with a velocity smaller than the Bohm velocity (i.e. the ion acoustic velocity) :
kyTe
m,

1
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This is the Bohm criterion.
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The plasma ion thermal velocity is lower than this velocity (because their mass is
much larger and their temperature is lower than the electron ones). Around the sheath,
in a zone called pre-sheath, they undergo a first electric acceleration towards the
sheath. The acceleration is provided by a potential difference between the plasma core

Up and the sheath surface :
. kyTe

US—UP— 2

Due to this acceleration, and because of the mass conservation, the ion density at

the surface of the sheath is lower than that in the quasi-neutral plasma far from the

probe, beyond the pre-sheath:

_ —1/2
nis_neooe

The correction factor is established in the detailed sheath model.

e
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The ion saturation current is :
_ —1/2 kyTe
IiS__Qeneooe Al\/ -

m;
The sheath model shows the ion sheath collection area, A4, , depends on the probe
geometry, the probe potential and, if applicable, the magnetic field.
The ion sheath thickness ¢, depends on the potential difference between the

probe and the plasma U,=U,—U , and the Debye length Ape
3/4

}\‘De

qe|UA|

e;,;—=1.02 kT

1.b Electron sheath

The probe potential U, is larger than the plasma potential U
case of the electron sheath. lons are repelled from the probe.

, » we are in the

+ —
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Electron saturation current

The electron saturation current is calculated by the same product, estimated at the
plasma electron sheath surface:

ICSZQen v 'Ac .

The electron thermal velocity is large enough at the sheath boundary : no pre-sheath

is necessary. The electron parameters at the sheath boundary are the same as in the

surrounding plasma :
nC)S:neOO
The mean velocity component towards the probe is a fourth of the mean thermal
velocity modulus:

11 [8k,T,
Ves=F Ve =4\ "um,

The electron collection area A, may differ from the ion collection area depending
on the approximations.

_1 8kBTe
]eS_quneoer\/ .

Tm,
The electron sheath thickness ¢,, depends on the potential difference between the
probe and the plasma U,=U,— Up and the Debye length A, :
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qe UA
)\‘De

kyT,

e, (U,)=1.26

Electron ans ion saturation currents comparison

For a non magnetized plasma, the ion and electron collection areas are of the same
order of magnitude (less verified in magnetized plasma). Since the constant factors are
also of the same order, the main ratio between the expressions of the ion and electron
saturation currents is the inverse of the square root of the ion to electron mass ratio

vm,/m, . The electron saturation current is, with some exceptions, much more
intense than the ion current.

1.2 Probe current-voltage characteristic

The ion and electron flows reaching the probe depend on the difference between the
probe potential, U, , and the plasma potential around, U, .

2.a U,=U, Probe potential lower than plasma potential

We first study the case where the potential of the probe U, is lower than the
plasma potential U, : U, <U , .

probe TU sheath . plasma X

The ions are attracted by the probe: all the ions at the entrance of the sheath reach
the probe, the ion probe current /. is the ion saturation current /7, :

Iz'(UL):]iS(UL) :
On the other hand, part of the electrons entering the sheath are repelled in the
sheath depending on their kinetic energy.

The electrons have a Maxwellian energy distribution in the plasma :
—E

e k Te
fAE)=r5e™

All electrons whose kinetic energy E is smaller than the electrical potential energy
across the sheath qe(Up—UL) are repelled. The remaining density part, that which
reach the probe, is:

—(U,~U,)

J— kBTe
n,—n,,e
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The electron current part /, reaching the probe is the electron saturation current
/. reduced in the same proportions :

—4.
kBTe

(U/)_UL)
IG(UL):IeS(UL)e
The total current / is the sum of the ion and electron currents.

—4.
kBTe(Up

_Ul.)
I(UL):]z‘S<UL>+IeS<UL)e

2.b U,>U, Probe potential larger than plasma potential
We consider the opposite case where the probe potential is larger than the plasma
potential : U ,>U , .

In this case, the ions are repelled by the sheath. Since the ion temperature is very
low, all ions are repelled :

1,(U,)=0 .

All the electrons reach the probe :
[e<UL>:IeS<UL) -

The current at the probe output corresponds to the electron saturation current :
1(U,)=14(U,) .

2.c The current-voltage characteristic shape
The graphs below show a typical probe current-voltage characteristic.
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The first graph represents the current as a function of the polarization voltage :
1(U,) .
The second one represents the logarithm of the current from which the ionic

saturation current has been subtracted (estimated from the data) to keep only the
electron part of the current:

f(UL):log([(UL)_[iS<UL)> -
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In the intermediate zone, below the plasma potential, where the electron current is
much larger than the ion saturation current, this function has the form:

f(U,)=log(1,(U, ) -1 5(U,~U,) .

This function has an affine form (the [(,,S(UL) logarithm variation is neglected). the
function slope is inversely proportional to the electron temperature 7'

df _ 4.
dU(UL>_kBTe '

The function f(UL) reaches the electron saturation current value when the
voltage is equal to the plasma potential : /(U ,)=log(/,.(U,)) .

Above the plasma potential, the function keeps the electron saturation current value.
This value still varies slowly with the probe potential because the probe collection area
depends on the probe to plasma potential difference. It is possible to deduce the
potential of the plasma because of this property.

Derivation of plasma parameters

We can deduce from the probe current-voltage characteristic the main plasma
parameters around the probe.

The ion and electron saturation currents are deduced from the current values
corresponding respectively to the lowest and highest potentials.

In the intermediate range, the characteristic should show an exponential shape. In
this case, the electron temperature is deduced from the exponential rate parameter.
The plasma potential corresponds to the transition from the exponential part to the
electron saturation part.

Knowing the electron temperature, it is possible to estimate the electron thermal
velocity and the Bohm velocity. From these velocities we can deduce the ion and
electron densities from the saturation currents, provided that the probe ion and
electron collection areas can be estimated.

1.3 Magnetic Field Effects

The magnetic field acts on the Langmuir probe measurements through the
estimation of the the probe ion and electron sheath collection surface.

Since the ions and electrons are confined by the cyclotron motion around the
guiding center trajectory along the magnetic field lines, the probe particle collection
area is limited by the shadow of the probe across the direction of the magnetic field.
The collection surface also includes the sheath that surrounds the probe.

To this surface, in certain cases, we add a thickness equal to the particle mean
Larmor radius. This extension depends on the probe geometry.

e -

3.a Cylindrical probe along the magnetic field axis
We consider a cylindrical probe whose axis is along the magnetic field Eo :

The probe radius is Pz and length, /, . The probe interacts with the plasma on

one side of the cylinder. The other side is usually used for the probe support and
external connection.

The collection area depends on the particle species, ion or electron, on the potential

Elementary probe model 8



of the probe and on the magnetic field.
Probe ion collection area

For the ion collection, the collection area includes the probe surface:
2
A,=mp;
It is necessary to add to this area, the probe sheath thickness e,-S(UL) :
2
Asz‘:n[p["ez‘s( UL)}
The ion Larmor radius increases the probe collection area.

. -9 . _4.By
The ion cyclotron angular frequency Wa=2T f¢ is: w,= s

The ion temperature, even if it is small, induces a significant ionic Larmor radius,
compared to the probe sheath size.
The mean thermal velocity along each direction Vri is:

. 3kpT,
Vi T
Vi

The ion mean Larmor radius Peri s : Peri=w, -
The mean particle path per cyclotron gyration Leri along the magnetic field line is :

Vi
l= V., =270 -
We consider the probe is longer than this path, [.>lz .
All ions whose guiding center is closer to the probe sheath than the mean Larmor

radius P intercept the sheath. In this case, the ion collection air is :

2
Ai:Asi:n{pL-l-eis( UL>+chi
The probe ion collection area depends on the probe potential and the magnetic field
magnitude.

Probe electron collection area
For the electron collection, the electron Larmor radius is much smaller than the ion
Larmor radius. It is generally negligible compared to the size of the probe and sheath.
The probe electron collection area is limited to the surface of the electron sheath
around the probe:

Elementary probe model 9



Ae:Ase:n {pL+ees(UL)]2 '

3.b Cylindrical probe perpendicular to the axis of the
magnetic field

If the cylindrical probe is perpendicular to the magnetic field lines, the probe
collection areas are very different.

lon collection area

The probe surface perpendicular is a rectangle of length /, and width 2p, . The
probe can be reached from both sides. The probe collection area in the direction of the
field is for this configuration:

A =4p,1
p L*L -
The probe area including the sheath (the sheath is only present on one side in the
length direction) :

Asz’:4(pL+ez‘s(UL)>(ZL+eis(UL)) :
The finite ion mean Larmor radius also applies:
Api:4(pL+eis(UL)+chi)(ZL+eis(UL)-I-chi) -

If the probe size along the magnetic field line is longer than the ion guiding center
mean path per cyclotron gyration, 2(pL+e,-S(UA))>lcT,~ , the collection area also
includes the thickness Pcri around the sheath :

Ai:Api .
In the opposite case 2(pL+e,-S(UA))<lcTi , the ion portion intercepting the sheath

depends on the ratio between the probe size along the magnetic field line and the ion
guiding center mean path per cyclotron gyration:

. z(pL"'en(UA)) _

lcTi
The collection area is then :

2(p[‘+ei.v(UA))

lcTi

A=A _+min A0(4,—4,) .
Electron collection area
We neglect the electronic Larmor radius.

The probe collection area including the sheath :
Ae:4(pL+ees(UA))(IL+ees(UL)) .

Elementary probe model 10



1.4 Floating potential

If the probe is not connected to the same ground as the plasma, no current comes
out of the probe. In this case, the probe is electrically charged so its own potential

guarantees the absence of net current to it: this is the probe floating potential Uf :
1(U,)=0 .
The floating potential U , is different from the plasma potential U, . When the
probe is at plasma potential, no particle is repelled. Since the electron velocity is much
larger than the ion one, as the ion and electron densities are close, the electron flow to

the probe is much larger than the ion flow. The probe becomes negatively charged with
electrons. Its potential decreases. The floating potential is therefore lower than the

plasma potential U ,<U , .

It is fixed by the zero current condition :

q.
k T (Uf_ Up)

L(U )+ 1 e =0
We use the expressions for the ion and electron saturation currents :

qe
1 8kBTe kBTe(Uf_UP)
ZQeneooA(%(Uf)\/ m e
We deduce the floating potential :
kBTe 1 m; Ae(U/))

—_ ! +
27 12 2m lnA,.(Uf)

The floating potential Uf differs from the plasma potential Up by several times

the factor k,;T,/2¢q, (half of the electron temperature expressed in eV).

Its knowledge alone does not allow to know precisely the plasma potential. In non
magnetized plasma, the ion and electron collection areas are close: the term inside the
logarithm essentially depends on the particle mass ratio. In magnetized plasma, the
finite Larmor radius effect on the ion collection area must be taken into account.

kyTe

m.

1

ZQeneooe_l/z A/(Uf)\/

U.f‘:Up_

e
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2 Probe Measurement Practice

The probe electronic assembly and the data analysis for mean and fluctuation
measurements are described.

2.1 Probe polarization and current
measurement

The Langmuir probe must be polarized over a wide voltage range, between

U,,,=——30V and U,,,.=20V in order to reach the saturation current zones over
a fairly wide voltage range.

In order to simultaneously impose a probe polarization voltage on the probe and
read the current coming from the probe, an electronic assembly based on operational

amplifiers is used.

| - U Conversion

R =100Q
R,
r—i'l U.Y:UL+R(,'IL
nmA
+/-48 V R

v

ﬂg+ sy Subtractor
R
“ h a R(I

Voltage Amp.
DC or SIN
generator U UL/na ' R(. [L
77 Digital Acquisition

The main component of this assembly is a current-voltage converter, allowing
the probe polarization. The conversion resistor R, choice (here R.=100Q )

depends on the maximum expected current, in order to guarantee a maximum
output voltage of a few volts.

Upstream, a voltage amplifier (factor n, , n,=10 | input resistance R, ,
feedback resistance 7n,R, ) allows the use of a standard analog signal
generator (voltage range UgE[—3 V,2V] ). It is also easier to acquire such
generator voltage U, in synchronization with the probe current measurement.
The voltage amplifier output voltageis U, =n,U, .

At the output of the current-voltage converter, the voltage is U =U ,+R.[, . A

Probe Measurement Practice 12



voltage subtractor (common resistance R, ) is used to subtract the probe
polarization voltage : the converted probe current only remains. A digital
acquisition card is used to simultaneously record the generator voltage,
Ug:UL/na , and the voltage resulting from the probe current conversion
U,=R.I, .

A point-by-point polarization voltage and time mean current measurements give the

probe mean current-voltage characteristic. The characteristic analysis gives the time
mean parameters of the plasma.

2.2 Dynamic Probe Current Measurements

With the Langmuir probe, it is also possible to observe fluctuations in plasmas.

2.a Fixed potential measurement

The easiest fluctuation measurement is to acquire the probe current at constant
probe potential. If the chosen potential is always higher than the plasma potential, the
current measurement corresponds to the probe electron saturation current. This
current mainly varies with the electron density. It also depends on the electron
temperature, because of the role of the electron velocity in the current.

2.b Dynamic characteristics

We want to perform dynamic measurements of electron density, temperature and
plasma potential. The probe current-voltage characteristic measurements can be
performed by very rapidly polarizing the probe over the full characteristic voltage
range.

For the characteristic to be exploitable, the plasma must be considered as a frozen
fluid for the time necessary to measure this characteristic. The ion and electron
densities, electron temperature and plasma potential must be considered constant
over this voltage sweep time.

The polarization frequency of these measurements is limited by the response time of
the electronic assembly operational amplifiers. In order to avoid the presence of
harmonic frequencies higher than the fundamental, a sinusoidal signal shape is used,
rather than a triangular signal.

For op-amps with a rise time of 20V /us , the generator can be used up to the
frequency of 50kHz . At this frequency, the duration of a rising (or falling) voltage
edge is equal to half a period of the generator signal, 10 us . This voltage sweep
duration is sufficiently short if the plasma fluid fluctuations have a maximum frequency
lower than 50kHz .

This dynamic measurement can also produce the time mean plasma parameters.
The probe time mean characteristic is deduced from current and voltage time data :
for each polarization voltage, the corresponding currents are averaged. The total
duration of the measurement must then be long enough to validate the ergodic
assumption. The generator frequency is not important for these averaged
measurements.

In order to estimate the biases due to the high frequency diagnosis operation, we
can compare the dynamics time mean measurements with the generator frequency of

50kHz , with another one obtained at a much lower frequency 500 Hz . The low
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frequency measurement of the generator does not allows to observe the dynamics of
the plasma.

2.3 Dynamic signal correction

The graphs below show time signals of the probe polarization and current for a
generator at [ ,=50kHz .

Probe U vs. | time characteristics - 181004_test4G_-30mm_50kHz p4
T T T T T T ¥ T T

Plasma | [mA] — Plasma proper | for U fall ——No plasma | [mA]

4 ——No plasma | [mA] = B Time mean plasma proper | ——Plasma proper | [mA] for U rise]
—— Plasma proper | [mA] for U rise —— Time mean plasma proper I, for U risg ——Plasma proper | [mA] for U fall

——Plasma proper | [mA] for U fall —— Time mean plasma proper |, for U fall |di/du|

T T T T
—U V] —— Plasma proper | for U rise l Plamsa | [mA]
|
|
\
[

(V] [mA]

4 1 1 Il 1 1 1 1 1 1 1 1 1 1 C) 1 Il 1
0 0.01 0.02 0.03 0.04 0.05 0.06 -25 -20 -15 -10 -5 0 5) 10 15 0 0.005 0.01 0.015 0.02
t[ms] U[V] t[ms]

The graph a) shows time signals during 3 generator periods. The yellow plot
corresponds to the probe current (in mA ). The sinusoidal signal in purple plot shows
the generator signal (in 2} ). The current signal is very asymmetrical with respect to
the generator signal. However, the current response of the plasma should mainly
depend on the polarization voltage.

3.a Measurements with and without plasma

A probe current measurement without plasma (green plot) shows that the diagnosis
has a significant measurement bias: this bias is mainly due to the leakage currents in
the op-amps, and to the capacitive nature of the probe for the circuit (the probe current
is almost in quadrature with respect to the polarization voltage). In order to
compensate for these effects, the probe current measured without plasma is
subtracted from the current measured with the plasma. The measurement without
plasma is performed at another time with the same device. The subtraction of the 2
signals requires a correct generator signal synchronization, so that the polarization
conditions are identical on both signals. The generator frequency is stable enough that
synchronization is possible throughout the signal.

The current difference corresponds to the red and blue signal. The signal part in red
corresponds to the intervals when the generator voltage increases, the blue part, to the
complementary condition. This differentiation highlights the hysteresis on the signal.
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3.b Delay of the current over voltage measurements

The graph b) shows the same signal, as a function of the probe polarization voltage,
in order to highlight the current-voltage characteristics. The semi-transparent signal
corresponds to the continuation of the signal in time after the 3 first generator periods.

For each polarization voltage, the currents measured over time are averaged: this is
a green curve. The same mean value is evaluated, but differentiating between the
rising (in red) and falling (in blue) edges of the generator: these are the lighter red and
blue curves.

The graph c) shows these same time means (as well as the raw signal means), but
represented again as a function of time.

For this measurement carried out with a generator high frequency ( fg:SO kHz ),
hysteresis appears on the current-voltage characteristic between the measurements
corresponding to the time increasing probe polarizations and those corresponding to
the decreasing ones. This hysteresis is very pronounced on the central part, where the
current varies rapidly with the voltage. This hysteresis is partly due to a delay between
the probe polarization potential and the probe current measurements. This delay is due
to the round trip time of the signal from the generator to the probe and the response
time of the current-voltage conversion electronics. This delay is estimated by seeking
to minimize the hysteresis on the central part of the characteristic. It is estimated at a
value close to 0.5 us . This delay correction shows very small variations with the

experiments ( +£20% ). For low frequency measurements ( /,=500Hz ), this
delay has no significant effect.

3.c Optimization of current amplitude without plasma
We also notice that the ion part of the current, which should be very low, also shows
an hysteresis. However, on this part of the signal, the measurement without plasma
varies significantly: We assume that the amplitude of this response without plasma
drifts over time, and that the subtraction of the signal with no plasma induces this
asymmetry: We then correct the overall amplitude of the signal without plasma to limit
this asymmetry. This factor correction is 20% maximum.

Delay and amplitude corrected signal
The current-voltage graph above shows the same signals corrected for delay (
0.47 us ) and amplitude ( —4.5% ).
The mean hysteresis is much less pronounced than before the correction.
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2.4 Mean characteristics

A current-voltage characteristic analysis can be carried out on the time mean curve.
The figure below shows the analysis result.

The upper graph shows the data (in blue) in linear scale. The lower graph shows the
electronic part of the electron current in logarithmic scale.
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As expected, the (positive) electron current is stronger than the ion current.

In order to estimate the electron saturation current, we restrict the analysis over a
few volts above the maximum expected plasma potential (in the present case 51 ).
In order to estimate this current, the experimental data are adjusted by a affine function
over a wide voltage range ( 5V to 15V , black plot on the graph). The saturation is
not independent of the probe voltage: the greater the difference between the probe
and plasma potentials are, the thicker the probe sheath is, and the greater the
saturation current is. The saturation current is estimated for the lowest voltage of this
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range ( 5V in this case).

In order to characterize the ion saturation current, we assume that below a certain
voltage ( —22V in this case), all electrons are repelled and only the ion saturation
current persists. The measurement data are adjusted over a certain voltage range (in
this case —28V to —22V ) by a affine function, and the value of the ion saturation
current is considered for a given voltage (in this case —221 ).

In order to estimate the electron temperature, we first subtract the ion current from
the total current using the adjustment obtained for the ion saturation current. The result
is shown in logarithmic scale (the lower graph on the figure).

The electron current exponential growth appears as a a linear growth in logarithmic
scale. The voltage range over which this growth takes place is unknown a priori. The
upper limit of the exponential growth range is characterized by the fact the current
derivative with respect to the voltage (in purple on the graph), increases in the
exponential part and then decreases because of the saturation: the derivative
maximum corresponds to the exponential growth range upper limit. A first affine
adjustment is done around this derivative maximum over a 1.5V range. Since the
affine trend of the characteristic logarithm appears to be over a larger voltage range,
the voltage range is extended as long as the deviation between the data and the affine
adjustment does not increase rapidly. Once this voltage range is optimized, the
electron temperature is deduced from the inverse of the affine function slope. The
plasma potential is estimated by looking for the intersection between the affine
adjustment and the saturation affine adjustment.

Knowing the electron temperature and of the plasma potential, we can deduce the
ion and electron densities from the ion and electron saturation currents.

2.5 Time dynamics of plasma parameters

The polarization frequency ( /,=50kHz ) is large enough here, to process the
characteristic on each front (each blue part on the voltage-current graph above), with
no time averaging: the plasma changes sufficiently slowly over the time of a generator
front ( 10 us ) to deform the curve. We then apply the processing of the current-
voltage characteristic on each generator half-period. The time signals of the electron
density, of the plasma potential and of the electron temperature can be extracted.

The graph below shows the discrete time data reconstructed by this processing for
these 3 parameters.
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3 Sheath model

In order to determine the ion and electron flows at the surface of the sheath, it is
necessary to determine the behavior of the ions and the electrons in the sheath.

3.1 Preliminary notions

Before developing the sheath model, we study some important notions in order to
understand the behavior of the sheath.

1.a Debye length

The sheath around the probe is characterized by significant potential variations and
charge separations. What is the typical charge separation distance?

d, mmm - - IE'

+++ +++

We consider a plasma composed of positive (ions) and negative (electrons) opposite
charges of the same density n,=n, . We assume a plane charge separation at a
depth d between both species.

The charge per unit area is:

qg=dn.q, .
This charge separation induces an electric field £ :
dn.q,
E= & .
The electrical force per unit area, between positive and negative charges, is:
~d'niq;
F=—qE=———"

The electrical potential energy per unit area corresponding to this charge separation
is :
_ __—d'n,q,
Eq—d F— 80 b
The electron internal kinetic energy per unit area, when the electron temperature is
T, is:
E=dn,k,T, .
The maximum charge separation distance allowed by a plasma with this internal
energy corresponds to the case:

EI=IE,| -
The resulting distance is the electron Debye length A,
e kT
xm:d:JO <

2
n.g.

Typically, for an electron density ne:1017m_

3
and an electron temperature
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T,=2eV ,the electron Debye lengthis A, =33 um .
The Debye length is the characteristic length scale for direct electric effects.

1.b Child—Langmuir law

The Child-Langmuir law shows there is a limit on the surface current of a charged
particle beam propagating in vacuum between 2 surfaces at different potentials, with
no initial kinetic energy. We study how this law has consequences on the sheath
shape.

The problem is unidirectional. Only one particle species is present.

Particles have a negative charge —¢q,<0 . On the emission surface, at x=0 , the

particle velocity is zero v,(0)=0 . This surface is the potential reference: U(0)=0 .
We also assume the electric field is zero on this emission surface: j—xU (0)=0 .On

the second surface at the distance x=d , the potential is positive, in order to attract
negative charges: U (d)=U ;>0 .
The Poisson equation is applied to the beam:
d* ., _qnl(x)
dx’ U= € )
The particle velocity is determined by the particle energy conservation:

ymv,(x)'=q,Ulx) .

The particle velocity depends on the potential:
1
v (x)=

2¢,U(x) )5
Since the particle flux (flow per unit area) is conserved:

m
Jji=n(x)v(x)
the density depends on the potential:

1
2

S

m

N

ns(x>:js(2qu(x)

The Poisson equation becomes a quadratic equation on the potential U

m; 13

d’ 4. m,
dx’ U= ®o | 2q,U
In order to be able to integrate the members of the equation, we multiply the 2

members by %U , and we integrate following x :

. 1 —1
X d d’ (49 Js|m,\3,,2 d
dedeszX— o %o 2q U de )

)

At the initial surface, the conditions are U (0)=0 and j—xU(O):O ;

Lo
27172
dx U

the square root of the equation is:

(iU)2=2%g(2 q,m;
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—1 e 1
4 d |~ Js)2 .
U aU_(zg—o) 2g,m,)
This equation can be integrated (with the limit condition U(O):O ) :

2\ & 2

This relation is applied to the second surface, at x=d
1

qsmg\7 52

2 d- -

This condition determines the particle flux :

L4 (2 pul
]s_§80 q,m, 2 dZ

The particle flux in a particle beam between 2 plates at 2 different potentials is
limited by the potential difference and the distance between the plates.

As the conditions in the probe sheath are close to those of the Child-Langmuir law,
comparable relation determines the sheath depth the potential difference between the

plasma and the probe.

3 3 1 1
4 \ 2 SmS 4
U= (]) a.m |5

320 9 J,

1.c Collision mean free paths

In order to assess the effect of collisions inside the sheath, we compare the mean
free paths for different particles at the characteristic scale of the sheath, the Debye
length.

Collisions of charged particle on neutrals

The mean free path /, particle species s , ion or electron, on the neutrals 7

(density 7, ), is given by :
_ 1
ns— o,.n,

O.s is the interaction cross section between the species s and the neutrals.
For argon, the cross section of the ions 4" on the neutrals is ¢_,= 10""*m* , and

that on electrons is 0%:10_19m2 . For typical neutral densities of the order of

n,=10"m"> , these mean free paths are /,,=10cm for ions, and /,,=1m for

electrons. These distances are large compared to the probe sheath thickness, which is
of the order of the Debye length A . , much smaller.

Collisions between charged particles

The mean free path between charged particles, here electrons, is estimated from
Coulomb interactions, taking into account the screening effect of charged particles by
their neighbors.

The collision cross section for electron Coulomb interaction is given by ( b is the
impact distance) :

q.
4me,

2
4 (bue gb
2.4 b min b
me Ve !

ee

With no impact distance limit, the Coulomb cross section diverges. Direct Coulomb
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interaction are limited by the Debye length b, ,.=A,, . The usual lower limit is given
2
qde 1
b, = :
i 43‘580 mevi

by the impact distance for which the scattering angle is 1 :

This integral known as the Coulomb logarithm is usually of the order of 10 :
) N
In A—jbm 7 10 .

We the electron velocity with their thermal value £k, Te:mevi

2 \2 4
ee: L 2 Jl:2 1n A
e, | k3T
Using the expression of the Debye length :
1
o, =———InA

“A4mrnihd,
This mean free path can be approximated by:
_Am a4
lee_ In A ne%’De
[,, is large compared to the typical probe sheath depth Ap. , if the particle

number in the Debye sphere ( nekze ) is large.
For the typical electron density ne:1017 m >, and the Debye length A ,,=33 um ,

this number is several thousand : ne}\i)e~3 10° .

For the typical conditions, the collisions between charged particles are negligible at
the scale of the probe sheath thickness: /,,=10cm .

3.2 lon sheath around the probe

We consider the Langmuir probe is a completely absorbent conductive surface
immersed in the plasma: electrons are absorbed by the probe and ions touching the
probe are recombined.

Since the Debye length is small compared to the size of the probe, we consider that
the problem can be approximated in a Cartesian geometry. The surface of the probe is
flat. The problem is unidirectional: the parameters are considered uniform in the planes
parallel to the surface of the probe. Velocities components parallel to the probe do not
play any role. The parameters vary only in the direction perpendicular to the surface of

the probe, ¢, .
The electric field due to the potential difference between the probe and the plasma

has different effects on the ions and electrons in the sheath. In the sheath, quasi-
neutrality is not respected. This zone is a few Debye lengths thick.

For the ion sheath, the probe potential is lower than the surrounding plasma
potential. The probe attracts ions and repels electrons.
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2.a Sheath and pre-sheath

probe tU sheath § pre-sheath plasma

Sheath boundary conditions with the probe and on the plasma
side
Far from the sheath, in the plasma, the plasma potential is zero: U_ =0 . In order
to simplify the expressions, the plasma potential is the reference.
The probe potential is lower than the plasma potential. The sheath potential is
negative everywhere: U <0 .
The probe potentialis U, ( U,=U,=U ,<0).
Far from the probe, the plasma is almost neutral, the electron density #,, and the
ion density n,,, are almost equal :

n,.—n.

The ion temperature 7, and electron temperature 7', are uniform in plasma
around the probe. The ion temperature is very low compared to the electron
temperature: 7, <7, .

Sheath and pre-sheath
The main force between the probe and the plasma is the electric force: the Poisson
equation characterizes the particle behavior in the sheath. We show there is no
solution for the Poisson equation with the plasma conditions on the plasma side: it is
necessary to introduce a second zone beyond the sheath, in order to be able to
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connect the boundary conditions on the plasma side. This is the pre-sheath. This zone
is characterized by the fact that this zone remains sensitive to the potential imposed by
the probe, but the electrical forces are not dominant there (i.e. the Poisson equation is
no longer sufficient to describe the processes).

2.b Particle behavior in the ion sheath

We first study the sheath.

In the sheath, quasi-neutrality is no longer respected: the dynamics between ions
and electrons follows Poisson's law :

d’ _&(

We neglect the other effects (collisions, ionization...) in the sheath.

Behavior of electrons

The electron energy distribution function in the sheath f, depends on the
distribution they had in the plasma away from the probe f,. . At position x where
the potential is U , the electrons whose initial energy away in the plasma £, is
smaller than q,U are repelled before reaching this position.

The relation between the energy inside and outside the sheath for the non repelled
electrons is :

E.=E,,+qU .

The particle conservation (for the non repelled electrons) between the outside of the

sheath and the sheath is given by the relation :

fAE)dE, = f B o) dE,.., .

Because the energy relation is only a uniform subtraction :
dE . =dE.,, .

As a result, the shape of the energy distribution is preserved :

fAE)=f lE.e) .

The electron kinetic energy distribution far from the probe is a Maxwellian, at the
density n,, and the temperature 7,

n

feoo(Eoo):ﬁekBTe .

The electron energy distribution in the sheath is deduced:
—(E—q.U)
n,, k,Te

FAE)=

The shape is also a Maxwellian with the same temperature 7', :

.U —E
_ New  kyTe kyTe )
fe(E)_ kB Te e e
The electron density in the sheath varies with the potential U

q.U

n=[ fE)dE=n, "™ -
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The electron density is reduced by loss of repelled electrons.

lon behavior

We will verify that the Poisson equation applied in the sheath does not find an
adequate solution with an ion thermal velocity at the sheath boundary as low as the

thermal ionic speed. At the boundary of the sheath, the ions have a velocity v, larger

than the ion thermal velocity. The plasma potential is U, , non zero, because of the
pre-sheath. The parameter values at the sheath boundary are established below.

Inside the sheath, the ions are accelerated due to the electric field:

1 21 2
S MV _Emivis_qe(U_Us) ;

or:

1
_\/2mivlzyqe(UUv)
Vl— -

1
2M;

lon flux per unit area, Jj. is conserved through the sheath :
ji:nivi:jis:nisvis .
These conditions determine the ion density as a function of the sheath potential :

1 2
V. S M Vi
n=-n —=n. .
1 IA) vi IA) l 2
2 mivis_Qe(U_Us)

We assume the plasma is quasi-neutral in the pre-sheath :

nz’s ~ nes
with :

q.U,
_ kyTe .
Ny =N, €

Poisson equation
The above expressions for the electron and ion densities 7, and n; are used:

q.({U-U) 1 2
kyTe B 2mivl’S

d’ ;
F U:g_ones e 1 2
X Emivis_Qe(U_ Us)
This equation on the potential, associated with the boundary conditions on the probe
and on the pre-sheath side, is sufficient to determine the sheath potential profile. But

this equation has no analytical solutions.

2.c Connection between sheath and pre-sheath

Bohm criterion
What is the simplified form of this equation near the plasma sheath boundary (where
the potential is closeto U, )?
We assume the potential energy is much smaller than the electron and ion kinetic
energies:
—q,(U-U )<k,Te
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_qe(U_Us)<<%mivi '
The equation is simplified :
2 kT U-U,
d_2U: 1_ - ei2 2 - ’
dx Ao,

m, vy
where A, is the electron Debye length at the boundary :

}\’ _ SOkBTe
P\ noql

If the ion velocity at the sheath boundary verifies :

kyTe
vis< m b

The solution of the simplified equation at low potential oscillates spatially: this
solution can not be connected with the sheath inner zone where the potential varies in
a monotonous way, with a weak gradient in the direction of the plasma.

In order to get a realistic solution for the whole sheath, the ion velocity at the sheath
boundary should be larger than a specific velocity:

\/kBTe
V= .

m.

1

is

This is the Bohm criterion.

The sheath potential no longer oscillates. The potential profile is close to a
monotonic, quasi-exponential shape over the sheath.

The Bohm criterion expresses the fact that the ion density close to the sheath
boundary:

q,(U-U,)

2
m.v.

should always be larger than the electron density :
_qU-U))
kyTe

in order to get a monotonous potential profile.

The ion density decreases less rapidly when approaching the probe than the
electron density, the ion velocity at the sheath boundary must not be too low.

The sheath boundary corresponds to the condition fixed by the Bohm criterion. The
ion sheath boundary velocity v, is:

_ |kyTe
vis_\/ m. '

1

This ion velocity is the Bohm velocity (it is also the plasma ion acoustic velocity).

The potential at the sheath boundary, U is deduced from the ion velocity by the

law of ion energy transfer:
1

1 2_1 2 _a U
2mivls_2mivioo q.Y ;s -

The ion velocity far in the plasma is of the order of the ion thermal velocity:

1—

niNnis

~
e né’ )

1

Sheath model 26



The relation for U | is:
1 1
EkBTeZEYikBTi_qux .
Since the ion temperature is much smaller than the electron one, 7, <7, , the
sheath boundary potential U, mostly depends only on electron temperature :
_ kyTe
V=m0,

lon flux at the sheath surface

Beyond the sheath boundary, the Poisson equation no longer has a stable solution
with the sheath because of the Bohm criterion. The electric force no longer dominates
the ion and electron dynamics. Beyond the sheath boundary, quasi-neutrality applies.
The ion density is equal to the electron density. The electron density depends on the
plasma potential:

q.U,
—_ —_ kBTe_ —-1/2
n nes—nme —neooe

is—

The ion flux across the sheath boundary is:
kyTe

m

. . ~1/2
jz’s_nisvis_neooe \/

The ion current on the probe is determined by this ion flux across the sheath surface
and the sheath surface itself.

Pre-sheath
The sheath boundary conditions on v, and U, are different from those

corresponding to plasma in the absence of a probe : v,,~0 and U_=0 . The pre-
sheath is characterized by the slow acceleration of the ions by the slow variation of the
potential. In the pre-sheath, the Poisson equation alone does not have a solution
compatible with the sheath: the acceleration does not occur directly through the
electric field due to the potential difference between the sheath boundary and the
plasma. In this zone, other effects (ionization, collisions, etc.) must intervene to control
this acceleration.

Since the plasma is quasi-neutral in this zone, the pre-sheath thickness is not of the
order of magnitude of the Debye length. The spatial extension of the pre-sheath might
be much larger than the sheath. When collisions prevail, the pre-sheath size of the
order of the ion collision mean free paths.

If the size of the pre-sheath is larger than the probe size, the pre-sheath rather has a
spherical shape: The particle conservation no longer induce a conservation of the ion
surface fluxes.

i

2.d lon sheath thickness
In order to determine the probe collection surface, the probe sheath surface must be
determined.
We consider the case where the probe potential is in absolute value much larger
than the electron thermal energy divided by the elementary charge ¢, :
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kyTe

U >

In this case, the sheath electron density is neglected with respect to the ion density :
n,<n; .

We apply this condition to the whole sheath. At the sheath boundary, the electron
density reaches that of the ions: the approximation is not valid. But this problematic
area is small compared to the rest of the sheath: it is neglected.

The ion velocity in the sheath is:

Vi:\/_2sz .
The Poisson equation in the sheath is then :
’ e m;
c;izU:z_o]i\/—quU '
The equation is the same as the Child-Langmuir law situation (only one species),
with different boundary conditions between the sheath and the pre-sheath.

e

To solve the Poisson equation, we multiply the 2 members by %U , and we
integrate along X

) 4y Ud'— D4
X, dx x x. % Ji

m
2qud_de L]

where X, is the sheath boundary position.
At this surface, the potential is U (x )=U_ and the electric field is almost zero,

%U(xs)zo ;

d 2_ 2j,
(de) —g—o\/2qeml—(\/—U—\/—US) :
This equation is integrated a second time to obtain a relation between the potential

U and position x :
N=U-V-U " V-U+2V=U |=

We apply this result to the probe, x=0 , with the probe potential, [/, . The sheath
boundary potential is :

)

SJ,m 8jimq,

3
4

8o

kyTe
U,=— 2q,
and the ion flux at the sheath boundary is :
i =, =n, e—1/2\/kBTe
]z’s is zs m. '

1

The equation introduces the Debye length :

ek, T
}\’De:\/ 0 Bze
neQe

The relation links the sheath boundary position x, to the probe potential U/, . The
sheath boundary position corresponds to the sheath thickness:
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.2 14| |—q.U, 1 2 —q,U, \/‘
e, (UA>—XS—3(2€) — +V2|hp, -

is k,T, 2 k,T,
Since the probe potential is much larger than the electron thermal energy divided by
9 :

ke, Te
Usl>=2=
the expression is simplified :
2 /4 —q, U, 3/47\
eix(UA>_§(26) kBTe De

The sheath thickness is of the order of a few times the Debye length.

3.3 Electron sheath

In the case where the probe potential U, is higher than the plasma potential, a
sheath also forms of positive potential: the electrons are more numerous than the ions.
For this sheath, part of the ions is repelled:

U,>0 .

3.a Electron flux on the probe

Electron flux

Since the electron thermal velocity is large in the plasma, the Bohm criterion at
sheath boundary is always satisfied: the sheath boundary parameters have the same
values as further in the plasma : there is no pre-sheath.

The electrons flux reaching the probe is the product of the electron density by the
mean electron velocity in the plasma, at the sheath boundary. But only half of the
electrons should be taken into account, because the other half has a velocity oriented
in the opposite direction to the surface of the sheath.

For a Maxwellian velocity distribution (in modulus):

—m,v
2k,T

m, 3/24 )
d2rk,T, Ty e

e

felv)=
The mean velocity modulus is :
vewZ_fO f.(v)vadv .

The velocity integrated by substitution, u =y’

© 3 —py _J"f’ou —bu
S Ve dv= ) 2€ du

and integration by parts :
J'OO 3 —bvzd _|—u —bu
0 Vv e V= o) e
The mean velocity modulus :

o 8kyT,
veOO:j‘O fe(v)vdvz\/ T -
This mean velocity modulus is different from the mean velocity component along the
direction normal to the probe. The Maxwellian distribution in a Cartesian coordinate

* ®—1 —bu 1 —bul” 1
0—f0 2—b€ du=O—[We l
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system is factorized along the 3 directions :

fe(vx’ Vy’ vz):fex(vx)fex<vy)fex(vz) .
with a common unidirectional distribution :
m 1/2 _mfv-z*
feV)=\

2%, T,
with fo_ooo fex(vx)dvle :

e
Due to the distribution factorization, the mean velocity along one axis is independent
of the other axes :

2

00
1/2 G
m, ) _kBTe ZkBTg

m,v
oo - [ksT. 1
vexoo:fo dvxfex(vx)vx: 2nk,T, m. € O: 2nmezzveoo .

The mean axial velocity is a quarter of the mean velocity modulus.

The electron flux crossing the sheath boundary is then :
c 1 8kyT,
.]es_Z N, mm

e

e

lon flux

The ions present in the electron sheath have a behavior comparable to the electrons

in the ion sheath. Their density evolves in a comparable way due to the energy loss.
—q.U
kyTi
n.=n,,e
Since the ion temperature is very low, as soon as the probe potential is slightly
higher than the plasma potential, the ion flux is negligible:

.]is:O .
3.b Electron Sheath Thickness

In order to evaluate the electron sheath thickness, we use hypotheses analogous to
those used for the ion sheath. The Child-Langmuir law conditions are satisfied. The
equation governing the potential is the same, but the boundary conditions at the
sheath boundary differ.

We suppose the probe potential is sufficiently negative (the electric potential energy

is much larger than the kinetic energy at the sheath boundary:
kyTe
U,> p

e

The electron density can then be neglected compared to the ion density :
n,<n, .
The electron thermal velocity at the sheath boundary is neglected in comparison
with their velocity inside the sheath. The electron velocity inside the sheath is :
— |2q.U

e me
The Poisson equation in the sheath is then written :
d rr_94. . | m,
w Vs 20
The equation is solved in the same way. The boundary condition is U =0 (and not
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U=U, as forion sheath).
1/4

4 82 (xs_x) )

0

U3/4:§( 8 jom.q.

We apply this result to the probe position, x=0 , with the probe potential, U, .

343 8jim,q, 14
U, =37 =] x .

2
€

We use the expression of the electron flux at the surface of the sheath:

.1 8kyTe
YL —

and the electron Debye length :

)\’ — £OkBTe
P\ ngl

The sheath surface positions x, corresponds to the sheath thickness ¢, :
3/4
2

_2 114 —q. U
ees<UA)_3(4‘Tc) kBTe }\‘De .
For the same potential absolute value, the electron sheath is slightly larger than the
ion sheath.

Density estimation from the saturation current

The probe collection area depends on the probe sheath thickness, hence on the
Debye length, hence on the electron density. But the collection area is necessary to
evaluate the plasma density.

[eS:qenesvesAe(nes)

The equation to extract the electron density from the electron saturation current is
difficult to resolve. Numerically, it is possible to do a recurrent evaluation of the
electron density and the collection area, starting with no sheath. Since the collection
area is relatively not very sensitive to the electron density, the recurrent evaluation
converges rapidly.
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