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Introduction
A Langmuir probe is a conductor that is immersed in the plasma. We measure the 

current at the probe output as a function of the probe polarization potential with respect 
to the plasma potential. From this probe current-potential characteristic we can deduce 
some plasma parameters  around  the  probe.  A probe  plasma interaction  model  is 
necessary to evaluate the plasma characteristics from the measurements.

Probe Measurements are intrusive: they interact with the plasma. We focus on cold, 
weakly collisional plasmas. We present the effects of the magnetic field on the probe 
measurement.

The first part exposes an basic model of the probe.
The second part describes the implementation of the probe measurement.
The third part exposes a probe sheath model. This model is necessary to estimate 

the ion and electron flows at the probe. 
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1 Elementary probe model
We first expose an elementary model of the probe immersed in the plasma in order 

to describe the general behavior.  Some results are given with no model.  They are 
described in part  3. This part exposes the  interaction between the plasma  and the 
probe.

In  order  to  analyze  the  probe  current-voltage  characteristic,  it  is  necessary  to 
determine the ion and electron flows to the probe.

1.1 Particle flow to the probe
We  consider  a  cold  plasma,  consisting  of  single  charged  positive  ions i+ and 

electrons e− . Interaction with neutrals are neglected.

The ion temperature is very low compared to the electron one : T i≪T e . 
The probe surface is considered completely absorbing for the charged particles that 

reach it (the ions are recombined on the surface).

Since the Langmuir probe potential U L is different from the plasma potential U p , 
the probe has a different effect on the plasma electrons and ions. Because of the 
potential difference, over a certain distance around the probe, the quasi-neutrality of 
the plasma is no longer verified: it is the sheath that surrounds the probe. If the probe 
potential is lower than that of the plasma, the sheath mainly consists of ions. Electrons 
dominate in the opposite case.

The  particle  flow  reaching  the  probe  depends  on  the  probe  shape,  the  sheath 
thickness, the direction of the possible magnetic field.

If  the  probe  is  electrically  connected  to  the  same  ground  as  the  plasma,  the 
difference between the electron and ion flows reaching the probe generate an electric 
current I at the probe output. 

The probe current-voltage  characteristic  helps to  determine the ion and electron 
densities, the electron temperature and the plasma potential in the vicinity of the probe.

1.a Ion sheath
We are in the case the probe potential U L is lower than the plasma potential U p .
The ion current at the entrance to the sheath surrounding the probe is called the ion 

saturation current I iS . 
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Ion saturation current
This current is the product of the elementary charge qe by the ion flow. 

The ion  flow is the product of the probe collection area Ai , by the  ion flux. The 
probe ion collection surface is the surface at the sheath boundary with the surrounding 
plasma. 

The ion flux is the product of the ion density at the sheath surface, ni s , by the 

mean ion velocity at the entrance to the sheath v is . 
By convention, the current is positive for the electron part :
I iS=−qe nis vis Ai .

Bohm criterion on the ion sheath surface
The detailed sheath model in part  3 shows that the ions can not enter the sheath 

with a velocity smaller than the Bohm velocity (i.e. the ion acoustic velocity) :

v i s=cs=√ k BTe

mi

.

This is the Bohm criterion.

The plasma ion thermal  velocity is lower than this  velocity (because their mass is 
much larger and their temperature is lower than the electron ones). Around the sheath, 
in  a  zone called pre-sheath,  they undergo a first  electric  acceleration towards the 
sheath. The acceleration is provided by a potential difference between the plasma core
U p and the sheath surface :

U s=U p−
k BTe

2q e

Due to this acceleration, and because of the mass conservation, the ion density at 
the surface of the sheath is lower than that in the quasi-neutral plasma far from the 
probe, beyond the pre-sheath:

ni s=ne∞ e
−1/2

The correction factor is established in the detailed sheath model.
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The ion saturation current is :

I iS=−qe ne∞e
−1/2 Ai√ k BTe

mi

The sheath model shows the ion sheath collection area, Ai , depends on the probe 
geometry, the probe potential and, if applicable, the magnetic field. 

The  ion  sheath  thickness e i s depends  on  the  potential  difference  between  the 

probe and the plasma U Δ=U L−U p and the Debye length λDe :

e i s=1.02 [ qe|U Δ|
k BT e

]
3/4

λDe

1.b Electron sheath
The probe potential U L is  larger than the plasma potential U p ,  we are in the 

case of the electron sheath. Ions are repelled from the probe.

Electron saturation current
The electron saturation current is calculated by the same product, estimated at the 

plasma electron sheath surface:
I eS=qene s ve s Ae .

The electron thermal velocity is large enough at the sheath boundary : no pre-sheath 
is necessary. The electron parameters at the sheath boundary are the same as in the 
surrounding plasma :

ne s=ne∞

The mean velocity component towards the probe is  a fourth of the mean thermal 
velocity modulus:

ves=
1
4 vT e∞=

1
4 √ 8k B T e

πme .
The electron collection area Ae may differ from the ion collection area depending 

on the approximations.

I eS=
1
4
qe ne∞ Ae√ 8k B T e

πme

.

The electron sheath thickness ee s depends on the potential difference between the 

probe and the plasma U Δ=U L−U p and the Debye length λDe :
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ee s(U Δ)=1.26 [ qeU Δ

k BT e
]
3/4

λDe

Electron ans ion saturation currents comparison
For a non magnetized plasma, the ion and electron collection areas are of the same 

order of magnitude (less verified in magnetized plasma). Since the constant factors are 
also of the same order, the main ratio between the expressions of the ion and electron 
saturation currents is the inverse of the square root of the ion to electron mass ratio
√mi/me .  The  electron  saturation  current  is,  with  some  exceptions,  much  more 

intense than the ion current.

1.2 Probe current-voltage characteristic
The ion and electron flows reaching the probe depend on the difference between the 

probe potential, U L , and the plasma potential around, U p .

2.a U L≤U p Probe potential lower than plasma potential
We first  study the  case where  the  potential  of  the  probe U L is  lower  than the 

plasma potential U p : U L≤U p .

The ions are attracted by the probe: all the ions at the entrance of the sheath reach 
the probe, the ion probe current I i is the ion saturation current I is :

I i (U L)= I iS(U L) .

On the other hand, part  of  the electrons entering the sheath are  repelled in the 
sheath depending on their kinetic energy.

The electrons have a Maxwellian energy distribution in the plasma :

f e(E)=
ne∞

k BT e
e

−E
k BT e

.
All electrons whose kinetic energy E is smaller than the electrical potential energy 

across the sheath qe(U p−U L) are repelled. The remaining density part, that which 
reach the probe, is:

ne=ne∞ e

−qe

k BT e

(U p−U L)

.
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The electron current part I e reaching the probe is the electron saturation current 
I es reduced in the same proportions :

I e(U L)= I eS(U L)e

−qe

k BT e

(U p−U L)

.
The total current I is the sum of the ion and electron currents.

I (U L)= I iS (U L)+ I eS (U L)e

−qe

k BT e

(U p−U L)

2.b U L>U p Probe potential larger than plasma potential
We consider the opposite case where the probe potential is larger than the plasma 

potential : U L>U p .
In this case, the ions are repelled by the sheath. Since the ion temperature is very 

low, all ions are repelled :
I i (U L)=0 .

All the electrons reach the probe :
I e(U L)= I eS(U L) .

The current at the probe output corresponds to the electron saturation current :
I (U L)= I eS (U L) .

2.c The current-voltage characteristic shape
The graphs below show a typical probe current-voltage characteristic.

The  first graph represents the current  as a function of  the polarization voltage :
I (U L) . 

The  second one  represents  the  logarithm  of  the  current  from  which  the  ionic 
saturation current  has been subtracted (estimated from the  data) to keep only the 
electron part of the current:

f (U L)=log ( I (U L)− I iS (U L)) .
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In the intermediate zone, below the plasma potential,  where the electron current is 
much larger than the ion saturation current, this function has the form:

f (U L)=log ( I es(U L))−
qe

kBT e
(U p−U L) .

This function has an affine form (the I es(U L) logarithm variation is neglected). the 

function slope is inversely proportional to the electron temperature T e :

df
dU
(U L)=

qe

k BT e
.

The  function f (U L) reaches  the  electron  saturation  current  value  when  the 

voltage is equal to the plasma potential : f (U L)=log ( I es(U L)) .

Above the plasma potential, the function keeps the electron saturation current value. 
This value still varies slowly with the probe potential because the probe collection area 
depends on the probe to  plasma potential  difference.  It  is  possible  to  deduce the 
potential of the plasma because of this property.

Derivation of plasma parameters
We  can  deduce  from  the probe  current-voltage  characteristic  the  main  plasma 

parameters around the probe.
The ion and electron saturation currents are deduced from the current values

corresponding respectively to the lowest and highest potentials.
In the intermediate range, the characteristic  should show an exponential  shape. In 

this case,  the electron temperature is deduced from the exponential rate parameter. 
The plasma potential corresponds to the transition from the exponential part to the 
electron saturation part.

Knowing the electron temperature, it  is possible to estimate the electron thermal 
velocity and the Bohm velocity.  From these velocities we can deduce the ion and 
electron  densities  from  the  saturation  currents,  provided  that  the  probe  ion  and 
electron collection areas can be estimated.

1.3 Magnetic Field Effects
The  magnetic  field  acts on  the  Langmuir  probe  measurements  through  the 

estimation of the the probe ion and electron sheath collection surface.
Since the  ions  and  electrons  are  confined  by  the  cyclotron motion  around  the 

guiding center  trajectory along the magnetic field lines, the probe particle collection 
area is  limited by the shadow of the probe across the direction of the magnetic field. 
The collection surface also includes the sheath that surrounds the probe.

To this surface, in certain cases, we add a  thickness equal to the particle  mean 
Larmor radius. This extension depends on the probe geometry.  

3.a Cylindrical probe along the magnetic field axis
We consider a cylindrical probe whose axis is along the magnetic field B⃗0 .

The probe radius is ρL and length, l L . The probe interacts with the plasma on 
one side of the cylinder.  The other side is usually used for the probe support  and 
external connection.

The collection area depends on the particle species, ion or electron, on the potential 
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of the probe and on the magnetic field.

Probe ion collection area

For the ion collection, the collection area includes the probe surface:

AL=πρL
2

It is necessary to add to this area, the probe sheath thickness e i s(U L) :

Asi=π [ρL+e i s(U L)]
2

.

The ion Larmor radius increases the probe collection area. 

The ion cyclotron angular frequency ωci=2π f ci is : ωci=
qe B0

mi

The ion temperature, even if it is  small, induces a significant ionic Larmor radius, 
compared to the probe sheath size.

The mean thermal velocity along each direction vTi is :

vTi=√ 3 kB T i

mi
.

The ion mean Larmor radius ρcTi is : ρcTi=
vTi
ωci

.

The mean particle path per cyclotron gyration lcTi along the magnetic field line is :

lcTi=
vTi
νci
=2πρcTi .

We consider the probe is longer than this path, lL>l cTi . 
All ions whose guiding center  is closer to the probe sheath than the mean Larmor 

radius ρci intercept the sheath. In this case, the ion collection air is :

Ai=Asi=π [ρL+e i s(U L)+ρcTi ]
2

.

The probe ion collection area depends on the probe potential and the magnetic field 
magnitude.

Probe electron collection area
For the electron collection, the electron Larmor radius is much smaller than the ion 

Larmor radius. It is generally negligible compared to the size of the probe and sheath.
The probe electron collection area is limited to the surface of the electron sheath 

around the probe: 
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Ae=Ase=π [ρL+ee s(U L) ]
2

.

3.b Cylindrical  probe  perpendicular  to  the  axis  of  the 
magnetic field

If  the  cylindrical  probe  is  perpendicular  to  the  magnetic  field  lines,  the  probe 
collection areas are very different.

Ion collection area

The probe surface perpendicular is a rectangle of length l L and width 2ρL  . The 
probe can be reached from both sides. The probe collection area in the direction of the 
field is for this configuration:

A p=4ρL l L .
The probe area including the sheath (the sheath is only present on one side in the 

length direction) :
Asi=4 (ρL+e i s(U L))( lL+e i s(U L)) .

The finite ion mean Larmor radius also applies:

Aρi=4 (ρL+ei s(U L)+ρcTi ) ( l L+ei s(U L)+ρcTi ) .

If the probe size along the magnetic field line is longer than the ion guiding center 
mean path per  cyclotron  gyration, 2 (ρL+ei s(U Δ))>l cTi ,  the  collection  area  also 
includes the thickness ρcTi around the sheath :

Ai=Aρi .

In the opposite case 2 (ρL+ei s(U Δ))<l cTi , the ion portion intercepting the sheath 
depends on the ratio between the probe size along the magnetic field line and the ion 
guiding center mean path per cyclotron gyration:

 p=
2 (ρL+ei s(UΔ ))

lcTi
.

The collection area is then :

Ai=Asi+min [ 2 (ρL+ei s(U Δ))
lcTi

,1 ](Aρi−Asi) .

Electron collection area
We neglect the electronic Larmor radius. 
The probe collection area including the sheath :

Ae=4 (ρL+ee s(U Δ)) ( l L+ee s(U L)) .
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1.4 Floating potential
If the probe is not connected to the same ground as the plasma, no current comes 

out of the probe. In this case, the probe is electrically charged  so its own potential 
guarantees the absence of net current to it: this is the probe floating potential U f :

I (U f )=0 .

The floating  potential U f is  different from the plasma potential U p .  When the 
probe is at plasma potential, no particle is repelled. Since the electron velocity is much 
larger than the ion one, as the ion and electron densities are close, the electron flow to 
the probe is much larger than the ion flow. The probe becomes negatively charged with 
electrons. Its potential  decreases. The floating potential is therefore lower than the 
plasma potential U f <U p .

It is fixed by the zero current condition :

I iS (U f )+ I eS e

qe

k BT e

(U f−U p)
=0 .

We use the expressions for the ion and electron saturation currents :

1
4
qene∞ Ae (U f )√ 8 kBT e

πme
e

qe

k BT e

(U f−U p)
=qene∞e

−1/2 Ai(U f )√ k BTe

mi

.

We deduce the floating potential :

U f=U p−
k BT e

2qe
(12 ln

mi

2πme

+ln
Ae(U f )
Ai(U f ) ) .

The floating potential U f differs from the plasma potential U p by several times 

the factor k BT e /2 qe (half of the electron temperature expressed in eV). 
Its knowledge alone does not allow to know precisely the plasma potential. In non 

magnetized plasma, the ion and electron collection areas are close: the term inside the 
logarithm essentially depends on the particle mass ratio. In magnetized plasma, the 
finite Larmor radius effect on the ion collection area must be taken into account.
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2 Probe Measurement Practice
The  probe  electronic  assembly  and  the  data  analysis  for  mean  and  fluctuation 

measurements are described.

2.1 Probe polarization and current 
measurement

The  Langmuir  probe  must  be  polarized over  a  wide  voltage  range,  between
U Lmin=−30V and U Lmax=20V in order to reach the saturation current zones over 

a fairly wide voltage range.
In order to simultaneously impose a probe  polarization voltage on the probe and 

read the current coming from the probe, an electronic assembly based on operational 
amplifiers is used.

• The main component of this assembly is a  current-voltage converter, allowing 
the probe polarization. The conversion resistor Rc  choice (here Rc=100Ω ) 
depends on the maximum expected current, in order to guarantee a maximum 
output voltage of a few volts.

• Upstream,  a  voltage  amplifier (factor na , na=10 ,  input  resistance Ra , 

feedback  resistance naRa )  allows  the  use  of  a  standard analog  signal 

generator (voltage  range U g∈[−3V ,2V ] ). It is also easier to acquire  such 

generator voltage U g in  synchronization with the probe current measurement. 

The voltage amplifier output voltage is U L=naU g .

• At the output of the current-voltage converter, the voltage is U s=U L+Rc I L . A 

Probe Measurement Practice                                                                                                      12

DC or SIN
generator

Probe

Digital Acquisition

I → U Conversion

+
-

+
-

+/-48 V

+/-48 V

+
-

+/-48 V

Voltage Amp.

Subtractor

U g

naRa

naRa

Ra

Ra

U L /na

U d=Rc I L

R s

R s

R s

R s

Rc I L

U s=U L+Rc I L
Rc

Rc=100Ω

U L=naU g

U L
I L

U L



voltage  subtractor (common  resistance Rs ) is  used  to  subtract  the  probe 
polarization  voltage  :  the  converted  probe  current  only  remains.  A  digital 
acquisition  card  is  used  to simultaneously  record  the  generator  voltage,
U g=U L /na ,  and  the  voltage  resulting  from  the  probe current  conversion
U d=Rc I L .

A point-by-point polarization voltage and time mean current measurements give the 
probe mean current-voltage characteristic. The characteristic analysis  gives the time 
mean parameters of the plasma.

2.2 Dynamic Probe Current Measurements
With the Langmuir probe, it is also possible to observe fluctuations in plasmas. 

2.a Fixed potential measurement
The easiest  fluctuation measurement is  to  acquire the probe current  at  constant 

probe potential. If the chosen potential is always higher than the plasma potential, the 
current  measurement  corresponds  to  the  probe electron  saturation  current.  This 
current  mainly  varies  with  the  electron  density.  It  also  depends  on  the  electron 
temperature, because of the role of the electron velocity in the current.

2.b Dynamic characteristics
We want to perform dynamic measurements of electron density, temperature and 

plasma  potential.  The  probe  current-voltage  characteristic  measurements  can  be 
performed  by  very  rapidly  polarizing the  probe  over  the  full  characteristic  voltage 
range. 

For the characteristic to be exploitable, the plasma must be considered as a frozen 
fluid  for  the  time  necessary  to  measure  this  characteristic.  The  ion  and  electron 
densities,  electron temperature  and plasma potential  must  be  considered constant 
over this voltage sweep time. 

The polarization frequency of these measurements is limited by the response time of 
the  electronic  assembly  operational  amplifiers.  In  order  to  avoid  the  presence  of 
harmonic frequencies higher than the fundamental, a sinusoidal signal shape is used, 
rather than a triangular signal.

For op-amps with a rise time of 20V /µs , the generator can be used up to the 
frequency of 50kHz . At this frequency, the duration of a rising (or falling) voltage 
edge is equal to half a period of the generator signal, 10 µs .  This voltage sweep 
duration is sufficiently short if the plasma fluid fluctuations have a maximum frequency 
lower than 50kHz .

This dynamic measurement  can also produce the time mean plasma parameters. 
The probe time mean characteristic  is deduced from current and voltage time data : 
for  each  polarization  voltage,  the  corresponding  currents  are  averaged.  The  total 
duration  of  the  measurement  must  then  be  long  enough  to  validate  the  ergodic 
assumption.  The  generator  frequency  is  not important  for  these  averaged 
measurements.

In order to estimate the biases due to the high frequency diagnosis operation, we 
can compare the dynamics time mean measurements with the generator frequency of

50kHz , with another one obtained at a much lower frequency 500 Hz . The low 
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frequency measurement of the generator does not allows to observe the dynamics of 
the plasma.

2.3 Dynamic signal correction
The graphs below show time signals of  the probe  polarization and current  for  a 

generator at f g=50kHz . 

The graph a) shows time signals during 3 generator periods. The yellow plot 
corresponds to the probe current (in mA ). The sinusoidal signal in purple plot shows 
the generator signal (in hV ). The current signal is very asymmetrical with respect to 
the  generator  signal.  However,  the  current  response  of  the  plasma should  mainly 
depend on the polarization voltage.

3.a Measurements with and without plasma
A probe current measurement without plasma (green plot) shows that the diagnosis 

has a significant measurement bias: this bias is mainly due to the leakage currents in 
the op-amps, and to the capacitive nature of the probe for the circuit (the probe current 
is  almost  in  quadrature  with  respect  to  the  polarization  voltage).  In  order  to 
compensate  for  these  effects,  the  probe  current  measured  without  plasma  is 
subtracted from the current  measured with  the  plasma.  The measurement  without 
plasma is performed at another time  with the same device. The subtraction of the 2 
signals requires a correct  generator signal  synchronization,  so that  the polarization 
conditions are identical on both signals. The generator frequency is stable enough that 
synchronization is possible throughout the signal.

 The current difference corresponds to the red and blue signal. The signal part in red 
corresponds to the intervals when the generator voltage increases, the blue part, to the 
complementary condition. This differentiation highlights the hysteresis on the signal.
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3.b Delay of the current over voltage measurements
The graph b) shows the same signal, as a function of the probe polarization voltage, 

in order to highlight the current-voltage characteristics.  The semi-transparent signal 
corresponds to the continuation of the signal in time after the 3 first generator periods.

For each polarization voltage, the currents measured over time are averaged: this is 
a green curve. The same mean value is  evaluated, but differentiating between the 
rising (in red) and falling (in blue) edges of the generator: these are the lighter red and 
blue curves.

The graph c) shows these same time means (as well as the raw signal means), but 
represented again as a function of time.

For this measurement carried out with a generator high frequency ( f g=50kHz ), 
hysteresis appears on the current-voltage characteristic between the measurements 
corresponding to the time increasing probe polarizations and those corresponding to 
the decreasing ones. This hysteresis is very pronounced on the central part, where the 
current varies rapidly with the voltage. This hysteresis is partly due to a delay between 
the probe polarization potential and the probe current measurements. This delay is due 
to the round trip time of the signal from the generator to the probe and the response 
time of the current-voltage conversion electronics. This delay is estimated by seeking 
to minimize the hysteresis on the central part of the characteristic. It is estimated at a 
value close to 0.5µs .  This  delay correction  shows very small  variations with  the 
experiments  ( ±20 % ).  For  low  frequency  measurements  ( f g=500 Hz ),  this 
delay has no significant effect.

3.c Optimization of current amplitude without plasma
We also notice that the ion part of the current, which should be very low, also shows 

an hysteresis. However, on this part of the signal, the measurement without plasma 
varies significantly:  We assume that the amplitude of this response without plasma 
drifts over time, and that the subtraction of  the signal with no plasma induces this 
asymmetry: We then correct the overall amplitude of the signal without plasma to limit 
this asymmetry. This factor correction is 20 % maximum.

Delay and amplitude corrected signal 
The  current-voltage  graph  above  shows  the  same signals  corrected  for  delay  (

0.47 µs ) and amplitude ( −4.5% ).
The mean hysteresis is much less pronounced than before the correction.
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2.4 Mean characteristics
A current-voltage characteristic analysis can be carried out on the time mean curve. 

The figure below shows the analysis result.
The upper graph shows the data (in blue) in linear scale. The lower graph shows the 

electronic part of the electron current in logarithmic scale.

As expected, the (positive) electron current is stronger than the ion current.
In order to estimate the electron saturation current, we restrict the analysis over a 

few volts above the maximum expected plasma potential (in the present case 5V ). 
In order to estimate this current, the experimental data are adjusted by a affine function 
over a wide voltage range ( 5V to 15V , black plot on the graph). The saturation is 
not independent of the  probe voltage: the greater the difference between the probe 
and  plasma  potentials  are,  the  thicker  the  probe  sheath  is,  and  the  greater  the 
saturation current is. The saturation current is estimated for the lowest voltage of this 

Probe Measurement Practice                                                                                                      16



range ( 5V in this case).
In order to characterize the ion saturation current, we assume that below a certain 

voltage ( −22V in this case), all electrons are repelled and only the ion saturation 
current persists. The measurement data are adjusted over a certain voltage range (in 
this case −28V to −22V ) by a affine function, and the value of the ion saturation 
current is considered for a given voltage (in this case −22V ).

In order to estimate the electron temperature, we first subtract the ion current from 
the total current using the adjustment obtained for the ion saturation current. The result 
is shown in logarithmic scale (the lower graph on the figure).

The electron current exponential growth appears as a a linear growth in logarithmic 
scale. The voltage range over which this growth takes place is unknown a priori. The 
upper limit of the exponential growth range is  characterized by the fact the current 
derivative  with  respect  to  the  voltage  (in  purple  on  the  graph),  increases  in  the 
exponential  part  and  then  decreases  because  of the  saturation:  the  derivative 
maximum  corresponds  to  the  exponential  growth  range  upper  limit.  A first  affine 
adjustment is done around this derivative maximum over a 1.5V range. Since the 
affine trend of the characteristic logarithm appears to be over a larger voltage range, 
the voltage range is extended as long as the deviation between the data and the affine 
adjustment  does  not  increase  rapidly. Once  this  voltage  range is optimized,  the 
electron temperature is  deduced from the inverse of  the affine function slope.  The 
plasma  potential  is  estimated  by  looking  for  the  intersection between  the  affine 
adjustment and the saturation affine adjustment.

Knowing the electron temperature and of the plasma potential,  we can deduce the 
ion and electron densities from the ion and electron saturation currents.

2.5 Time dynamics of plasma parameters
The polarization frequency ( f g=50kHz )  is large enough here, to process the 

characteristic on each front (each blue part on the voltage-current graph above), with 
no time averaging: the plasma changes sufficiently slowly over the time of a generator 
front  ( 10 µs )  to deform the curve.  We then apply the processing of  the current-
voltage characteristic on each generator half-period.  The time signals of the electron 
density, of the plasma potential and of the electron temperature can be extracted.

The graph below shows the discrete time data reconstructed by this processing for 
these 3 parameters.
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We can extract these signals at the frequency of f =100 kHz  (2 values for each 
generator period).

In  order  to  ensure  the  uncertainty  on  the  main  plasma parameter  evaluation is 
satisfactory, the time variation of the uncertainty of each of these parameters over time 
is also estimated. These uncertainties are evaluated for each characteristic, from the 
differences between the measurement data and the  affine adjustments made for the 
analysis. These uncertainties are estimated at three times the standard deviation.
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3 Sheath model
In order to determine the ion and electron flows at the surface of the sheath, it is 

necessary to determine the behavior of the ions and the electrons in the sheath.

3.1 Preliminary notions
Before developing the sheath model, we  study some important notions in order to 

understand the behavior of the sheath.

1.a Debye length
The sheath around the probe is characterized by significant potential variations and 

charge separations. What is the typical charge separation distance?

We consider a plasma composed of positive (ions) and negative (electrons) opposite 
charges of the same density ni=ne .  We assume a plane charge separation at a 
depth d between both species. 

The charge per unit area is:
q=d ne qe .

This charge separation induces an electric field E :

E=
d neqe
ε0

.

The electrical force per unit area, between positive and negative charges, is:

F=−q E=−d 2ne
2qe

2

ε0
.

The electrical potential energy per unit area corresponding to this charge separation 
is :

E q=d F=−d3ne
2qe

2

ε0
.

The electron internal kinetic energy per unit area, when the electron temperature is 
T e , is :

E i=d ne k BT e .
The maximum charge separation distance allowed by a plasma with this internal 

energy corresponds to the case:

|E i|=|Eq| . 

The resulting distance is the electron Debye length λDe :

λDe=d=√ ε0 k BT e

ne qe
2 .

Typically,  for  an  electron  density ne=1017m−3
and  an  electron  temperature 
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T e=2 eV , the electron Debye length is λDe=33 µm .
The Debye length is the characteristic length scale for direct electric effects.

1.b Child–Langmuir law
The Child-Langmuir law shows there is a limit on the surface current of a charged 

particle beam propagating in vacuum between 2 surfaces at different potentials, with 
no initial  kinetic  energy.  We  study how this  law has consequences on the sheath 
shape.

The problem is unidirectional. Only one particle species is present.
Particles have a negative charge −qs<0 . On the emission surface, at x=0 , the 

particle velocity is zero v s(0)=0 . This surface is the potential reference: U (0)=0 . 

We also assume the electric field is zero on this emission surface: 
d
dx
U (0)=0 . On 

the second surface at the distance x=d , the potential is positive, in order to attract 
negative charges: U (d )=U d>0 .

The Poisson equation is applied to the beam:
d 2

dx2 U=
qs ns( x)
ε0

.

The particle velocity is determined by the particle energy conservation: 
1
2 ms v s(x)

2=qsU (x) .

The particle velocity depends on the potential:

v s(x)=( 2qsU (x)
ms

)
1
2 .

Since the particle flux (flow per unit area) is conserved:
js=ns(x) v s(x ) ,

the density depends on the potential:

ns(x)= j s( ms

2 q sU (x) )
1
2 .

The Poisson equation becomes a quadratic equation on the potential U :

d 2

dx2 U=
q s j s
ε0 ( ms

2qsU )
1
2 .

In order to be able to integrate the members of  the equation, we multiply the 2 

members by
d
dxU , and we integrate following x :

∫0

x d
dx
U d 2

dx2 U dx=∫0

x q s j s
ε0 ( m s

2 qs
)

1
2 U

−1
2 d

dx
U .

At the initial surface, the conditions are U (0)=0 and
d
dx
U (0)=0 :

( ddx U )
2
=2

j s
ε0 (2 qsms )

1
2 U

1
2

the square root of the equation is:
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U
−1
4 d

dxU=(2 j s
ε0 )

1
2 (2 qsms )

1
4 .

This equation can be integrated (with the limit condition U (0)=0 ) :

U
3
4=3

2 (
j s
ε0 )

1
2 (q sms

2 )
1
4 x .

This relation is applied to the second surface, at x=d :

U d
3 /2= 9

4

j s
ε0 (q sms

2 )
1
2 d 2 .

This condition determines the particle flux :

js=
4
9
ε0 ( 2

q sms
)

1
2
U d

3 /2

d2
.

The particle flux in  a particle beam between 2 plates at  2 different  potentials  is 
limited by the potential difference and the distance between the plates.

As the conditions in the probe sheath are close to those of the Child-Langmuir law, 
comparable relation determines the sheath depth the potential difference between the 
plasma and the probe.

1.c Collision mean free paths
In order to assess the effect of collisions inside the sheath, we compare the mean 

free paths  for different particles at the characteristic scale of the sheath, the Debye 
length.

Collisions of charged particle on neutrals
The mean free path l ns particle species s ,  ion or electron, on the neutrals n

(density nn ), is given by : 

l ns=
1

σns nn
.

σns is the interaction cross section between the species s and the neutrals.

For argon, the cross section of the ions Ar+ on the neutrals is σni=10−18m2 , and 

that  on  electrons  is σne=10−19m2
.  For  typical  neutral  densities  of  the  order  of

nn=1019m−3
,  these  mean  free  paths  are l n i=10cm for  ions,  and l ne=1m for 

electrons. These distances are large compared to the probe sheath thickness, which is 
of the order of the Debye length λDe , much smaller.

Collisions between charged particles
The mean free path between charged particles, here electrons, is estimated from 

Coulomb interactions, taking into account the screening effect of charged particles by 
their neighbors. 

The collision cross section for electron Coulomb interaction is given by ( b is the 
impact distance) :

σee=( qe
2

4πε0
)

2
4π
me

2 ve
4∫bmin

bmax db
b

 

With no impact distance limit, the Coulomb cross section diverges. Direct Coulomb 
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interaction are limited by the Debye length bmax=λDe . The usual lower limit is given 

by the impact distance for which the scattering angle is 1 : bmin=
qe

2

4 πε0

1
me v e

2 .

This integral known as the Coulomb logarithm is usually of the order of 10 :

ln Λ=∫bmin

bmax db
b
∼10 .

We the electron velocity with their thermal value k BT e=me ve
2

σee=( qe
2

4πε0
)

2
4π
k B

2 T e
2 lnΛ

Using the expression of the Debye length :

σee=
1

4 πne
2λ De

4 lnΛ

This mean free path can be approximated by:

 l ee=
4π
lnΛ

neλDe
4 .

l ee is  large  compared  to  the  typical  probe  sheath  depth λDe ,  if  the  particle 

number in the Debye sphere ( neλDe
3

) is large.

For the typical electron density ne=1017m−3
, and the Debye length λDe=33 µm , 

this number is several thousand : neλDe
3 ∼3 103

.

For the typical conditions, the collisions between charged particles are negligible at 
the scale of the probe sheath thickness: l ee=10cm .

3.2 Ion sheath around the probe
We consider  the  Langmuir  probe  is  a  completely  absorbent  conductive  surface 

immersed in the plasma: electrons are absorbed by the probe and ions touching the 
probe are recombined.

Since the Debye length is small compared to the size of the probe, we consider that 
the problem can be approximated in a Cartesian geometry. The surface of the probe is 
flat. The problem is unidirectional: the parameters are considered uniform in the planes 
parallel to the surface of the probe. Velocities components parallel to the probe do not 
play any role. The parameters vary only in the direction perpendicular to the surface of 
the probe, e⃗ x .

The electric field due to the potential difference between the probe and the plasma 
has different effects on the ions and electrons in the sheath. In the sheath, quasi-
neutrality is not respected. This zone is a few Debye lengths thick.

For  the  ion  sheath,  the  probe  potential  is  lower  than  the  surrounding  plasma 
potential. The probe attracts ions and repels electrons.
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2.a Sheath and pre-sheath

Sheath boundary conditions  with the probe and  on the plasma 
side

Far from the sheath, in the plasma, the plasma potential is zero: U∞=0 . In order 
to simplify the expressions, the plasma potential is the reference.

The  probe  potential  is  lower  than  the  plasma potential.  The  sheath  potential  is 
negative everywhere: U≤0 .

The probe potential is U Δ ( U Δ=U L−U p<0 ). 

Far from the probe, the plasma is almost neutral, the electron density ne∞ and the 

ion density ni∞ are almost equal :

ne∞=ni∞ .

The  ion  temperature T i and  electron  temperature T e are  uniform  in  plasma 
around the  probe.  The  ion  temperature  is  very  low  compared  to  the  electron 
temperature: T i≪T e .

Sheath and pre-sheath
The main force between the probe and the plasma is the electric force: the Poisson 

equation  characterizes  the  particle  behavior  in  the  sheath.  We  show  there  is no 
solution for the Poisson equation with the plasma conditions on the plasma side: it is 
necessary  to  introduce a  second zone beyond the sheath,  in  order  to  be able  to 
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connect the boundary conditions on the plasma side. This is the pre-sheath. This zone 
is characterized by the fact that this zone remains sensitive to the potential imposed by 
the probe, but the electrical forces are not dominant there (i.e. the Poisson equation is 
no longer sufficient to describe the processes).

2.b Particle behavior in the ion sheath
We first study the sheath.
In the sheath, quasi-neutrality is no longer respected: the dynamics between ions 

and electrons follows Poisson's law :

d 2

dx2 U=
qe
ε0
(ne−ni)

We neglect the other effects (collisions, ionization...) in the sheath. 

Behavior of electrons
The  electron  energy  distribution  function  in  the  sheath f e depends  on  the 

distribution they had in the plasma away from the probe f e∞ . At position x where 

the potential is U , the electrons whose initial energy away in the plasma E c e∞ is 

smaller than qeU are repelled before reaching this position. 
The relation between the energy inside and outside the sheath for the non repelled 

electrons is :
E c e=E ce∞+qeU .

The particle conservation (for the non repelled electrons) between the outside of the 
sheath and the sheath is given by the relation :   

 f e(E ce)dEc e= f e∞(Ec e∞)dEc e∞ .

Because the energy relation is only a uniform subtraction :
dE ce=dEc e∞ . 

As a result, the shape of the energy distribution is preserved :
f e(E ce)= f e∞(E ce∞) .

The electron kinetic energy distribution far from the probe is a Maxwellian, at the 
density ne∞ and the temperature T e  :

f e∞(E∞)=
ne∞

kBTe
e
−E∞
kB Te .

The electron energy distribution in the sheath is deduced:

f e(E)=
ne∞

k BTe
e
−(E−qeU )

k BTe .

The shape is also a Maxwellian with the same temperature T e :

f e(E)=
ne∞

k BTe
e

qeU

k BTe e
−E
kBTe .

The electron density in the sheath varies with the potential U   :

 ne=∫0

∞
f e(E)dE=ne∞e

qeU

kBTe .
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The electron density is reduced by loss of repelled electrons.

Ion behavior
We  will  verify that  the Poisson equation applied in  the sheath does not  find an 

adequate solution with an ion thermal velocity at the sheath boundary as low as the 
thermal ionic speed. At the boundary of the sheath, the ions have a velocity v is larger 

than the ion thermal velocity. The plasma potential is U s , non zero, because of the 
pre-sheath. The parameter values at the sheath boundary are established below.

Inside the sheath, the ions are accelerated due to the electric field: 
1
2 mi v i

2=1
2 miv is

2−qe(U−U s) ,

or :

v i=√ 1
2
miv is

2−q e(U−U s)
1
2 mi

.

Ion flux per unit area, j i is conserved through the sheath : 

j i=ni vi= j is=nis vis .
These conditions determine the ion density as a function of the sheath potential :

ni=nis

vis
vi
=nis √ 1

2
mi v i s

2

1
2 mi vi s

2−qe (U−U s)
.

We assume the plasma is quasi-neutral in the pre-sheath :
nis∼nes

with :

nes=ne∞e
qeU s

kBTe .

Poisson equation
The above expressions for the electron and ion densities ne and ni are used:

d 2

dx2 U=
qe
ε0

ne s(e qe (U−U s)
kBTe −√ 1

2 mi v i s
2

1
2 mi v i s

2 −qe (U−U s) )
.

This equation on the potential, associated with the boundary conditions on the probe 
and on the pre-sheath side, is sufficient to determine the sheath potential profile. But 
this equation has no analytical solutions.

2.c Connection between sheath and pre-sheath
Bohm criterion

What is the simplified form of this equation near the plasma sheath boundary (where 
the potential is close to U s ) ? 

We assume the potential energy is much smaller than the electron and ion kinetic 
energies:
−qe (U−U s)≪k BTe ,
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 −qe (U−U s)≪
1
2 mi v is

2
.

The equation is simplified :
d 2

dx2 U=(1−k BTe
mi

1

v i s
2 ) U−U s

λDes
2 ,

where λDes is the electron Debye length at the boundary :

λDes=√ ε0 k BT e

nes qe
2 .

If the ion velocity at the sheath boundary verifies : 

v i s<√ k BTe

mi

.

The  solution  of  the  simplified  equation  at  low  potential  oscillates  spatially:  this 
solution can not be connected with the sheath inner zone where the potential varies in 
a monotonous way, with a weak gradient in the direction of the plasma.

In order to get a realistic solution for the whole sheath, the ion velocity at the sheath 
boundary should be larger than a specific velocity:

v i s≥√ k BTe

mi

.

This is the Bohm criterion.
The  sheath  potential  no  longer  oscillates.  The  potential  profile  is  close  to  a 

monotonic, quasi-exponential shape over the sheath.
The  Bohm criterion expresses  the  fact  that  the  ion  density  close  to  the  sheath 

boundary:

ni∼nis(1−qe(U−U s)
mi v i s

2 )  

should always be larger than the electron density :

ne∼ne s(1−qe(U−U s)
k BTe ) .

in order to get a monotonous potential profile.
The  ion  density  decreases  less  rapidly  when  approaching  the  probe  than  the 

electron density, the ion velocity at the sheath boundary must not be too low.
The sheath boundary corresponds to the condition fixed by the Bohm criterion. The 

ion sheath boundary velocity v i s is :

 v i s=√ k BTe

mi

.

This ion velocity is the Bohm velocity (it is also the plasma ion acoustic velocity).
The potential at the sheath boundary, U s is deduced from the ion velocity by the 

law of ion energy transfer:
1
2 mi v is

2=1
2 miv i∞

2 −qeU s .

 The ion velocity far in the plasma is of the order of the ion thermal velocity:
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v i∞=√ γ ik BT i

mi

.

The relation for U s is :
1
2 k BT e=

1
2 γi k BT i−qeU s .

Since the ion temperature is much  smaller than the electron one, T i≪T e ,  the 

sheath boundary potential U s mostly depends only on electron temperature :

U s=−
k BTe

2qe
.

Ion flux at the sheath surface
Beyond the sheath boundary, the Poisson equation no longer has a stable solution 

with the sheath because of the Bohm criterion. The electric force no longer dominates 
the ion and electron dynamics. Beyond the sheath boundary, quasi-neutrality applies. 
The ion density is equal to the electron density. The electron density depends on the 
plasma potential:

ni s=ne s=ne∞ e
qeU s

kBTe=ne∞e
−1/2

.
The ion flux across the sheath boundary is:

j i s=ni s v i s=ne∞e
−1/2√ k BTe

mi

.

The ion current on the probe is determined by this ion flux across the sheath surface 
and the sheath surface itself.

Pre-sheath
The  sheath  boundary  conditions  on v i s and U s are  different  from those 

corresponding to plasma in the absence of a probe : v i∞∼0 and U∞=0 . The pre-
sheath is characterized by the slow acceleration of the ions by the slow variation of the 
potential.  In  the  pre-sheath,  the  Poisson equation  alone does not  have a  solution 
compatible  with  the  sheath:  the  acceleration  does  not  occur  directly  through  the 
electric  field  due to  the potential  difference between the sheath boundary and the 
plasma. In this zone, other effects (ionization, collisions, etc.) must intervene to control 
this acceleration.

Since the plasma is quasi-neutral in this zone, the pre-sheath thickness is not of the 
order of magnitude of the Debye length. The spatial extension of the pre-sheath might 
be much larger than the sheath.  When collisions prevail,  the pre-sheath size of the 
order of the ion collision mean free paths.

If the size of the pre-sheath is larger than the probe size, the pre-sheath rather has a 
spherical shape: The particle conservation no longer induce a conservation of the ion 
surface fluxes. 

2.d Ion sheath thickness
In order to determine the probe collection surface, the probe sheath surface must be 

determined.
We consider the case where the probe potential is in absolute value much larger 

than the electron thermal energy divided by the elementary charge qe :
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|U Δ|≫
k BTe

qe
.

In this case, the sheath electron density is neglected with respect to the ion density :
ne≪ni .

We apply this condition to the whole sheath. At the  sheath boundary, the electron 
density reaches that of the ions: the approximation is not valid. But this problematic 
area is small compared to the rest of the sheath: it is neglected.

The ion velocity in the sheath is:

v i=√−2qeU
mi

.

The Poisson equation in the sheath is then :
d 2

dx2 U=
qe
ε0

j i√ mi

−2 qeU
.

The equation is the same as the Child-Langmuir law situation (only one species), 
with different boundary conditions between the sheath and the pre-sheath.

To  solve  the  Poisson  equation,  we  multiply  the  2  members  by
d
dxU ,  and  we 

integrate along x :

∫x s

x d
dx
U d 2

dx2 U dx '=∫x s

x qe
ε0

j i√ mi

−2 qeU
d
dx
U dx ' ,

where x s is the sheath boundary position.

At this surface, the potential  is U (x s)=U s and the electric field is almost zero, 
d
dxU ( x s)=0 :

( ddx U )
2
=

2 j i
ε0
√2 qemi (√−U−√−U s ) .

This equation is integrated a second time to obtain a relation between the potential
U and position x :

(√−U−√−U s )
1/2 (√−U+2 √−U s )=3

4 ( 8 j i
2miqe

ε0
2 )

1 /4

(x s−x ) .

We apply this result to the probe, x=0 , with the probe potential, U Δ . The sheath 
boundary potential is :

U s=−
k BTe

2 qe
,

and the ion flux at the sheath boundary is :

j i s=ni s v i s=ne∞e
−1/2√ k BTe

mi

.

The equation introduces the Debye length :

λDe=√ ε0 k BT e

ne qe
2 .

The relation links the sheath boundary position x s to the probe potential U Δ . The 
sheath boundary position corresponds to the sheath thickness:
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e i s(U Δ)=x s=
2
3
(2e )1/4(√−qeU Δ

k BT e
− 1

√2 )
1/2

(√−qeU Δ

k BT e
+√2)λDe .

Since the probe potential is much larger than the electron thermal energy divided by
qe :

|U Δ|≫
kB Te

qe
, 

the expression is simplified :

e i s(U Δ)=
2
3
(2e )1/4(−qeUΔ

kBT e
)
3/4

λDe

The sheath thickness is of the order of a few times the Debye length.

3.3 Electron sheath
In the case where the probe potential U Δ is higher than the plasma potential, a 

sheath also forms of positive potential: the electrons are more numerous than the ions. 
For this sheath, part of the ions is repelled:

U Δ≥0 .

3.a Electron flux on the probe
Electron flux

Since the electron thermal  velocity  is  large in the plasma, the Bohm criterion at 
sheath boundary is always satisfied: the sheath boundary parameters have the same 
values as further in the plasma : there is no pre-sheath.

The electrons flux reaching the probe is the product of the electron density by the 
mean electron velocity in the plasma, at the sheath boundary. But only half  of  the 
electrons should be taken into account, because the other half has a velocity oriented 
in the opposite direction to the surface of the sheath.

For a Maxwellian velocity distribution (in modulus):

f e (v)=( me

2π k B T e )
3/2

4π v2 e
−me v2

2 k BT e
.

The mean velocity modulus is :

ve∞=∫0

∞
f e(v)v dv .

The velocity integrated by substitution, u=v2
 :

∫0

∞
v3 e−b v2

dv=∫0

∞ u
2 e−b u du

,
and integration by parts :

∫0

∞
v3 e−b v2

dv=[−u
2 b e−bu ]0

∞

−∫0

∞ −1
2 b e−b u du=0−[ 1

2 b 2 e−b u]0
∞

= 1
2 b 2 .

The mean velocity modulus :

ve∞=∫0

∞
f e(v)v dv=√ 8k B T e

πme
.

This mean velocity modulus is different from the mean velocity component along the 
direction normal to the probe. The Maxwellian distribution in a Cartesian coordinate 
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system is factorized along the 3 directions :
f e (vx , vy , vz)= f ex (v x) f ex(vy) f ex(v z) .

with a common unidirectional distribution :

f ex (vx )=( me

2 π kB T e )
1/2

e
−me v x

2

2 k B Te

, 

with ∫−∞
∞

f ex(vx)dvx=1 .

Due to the distribution factorization, the mean velocity along one axis is independent 
of the other axes : 

ve x∞=∫0

∞
dv x f ex(vx)vx=( me

2π kB T e )
1 /2 [−k B T e

me
e
−me v x

2

2 k B T e ]0
∞

=√ kB T e

2πme
=1

4 ve∞ .

The mean axial velocity is a quarter of the mean velocity modulus.
The electron flux crossing the sheath boundary is then :

j es=
1
4 ne∞√ 8 kB T e

πme
.

Ion flux
The ions present in the electron sheath have a behavior comparable to the electrons 

in the ion sheath. Their density evolves in a comparable way due to the energy loss.

ni=ne∞ e
−qeU

kBTi .

Since the ion temperature is very low, as soon as the probe potential  is  slightly 
higher than the plasma potential, the ion flux is negligible:

j i s=0 .

3.b Electron Sheath Thickness
In order to evaluate the electron sheath thickness, we use hypotheses analogous to 

those used for the ion sheath. The Child-Langmuir law conditions are satisfied. The 
equation  governing  the  potential  is the  same,  but  the  boundary  conditions  at  the 
sheath boundary differ.  

We suppose the probe potential is sufficiently negative (the electric potential energy 
is much larger than the kinetic energy at the sheath boundary:

U Δ≫
kB Te

qe

The electron density can then be neglected compared to the ion density :
ni≪ne .

The electron thermal  velocity at the sheath boundary is neglected in comparison 
with their velocity inside the sheath. The electron velocity inside the sheath is :

ve=√ 2qeU
me

.

The Poisson equation in the sheath is then written :
d 2

dx2 U=
qe
ε0

je√ me

2qeU
.

The equation is solved in the same way. The boundary condition is U=0 (and not
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U=U s as for ion sheath).

U 3 /4= 3
4 ( 8 je

2me qe

ε0
2 )

1/4

( x s−x) .

We apply this result to the probe position, x=0 , with the probe potential, U Δ .

U Δ
3 /4= 3

4 ( 8 je
2me qe

ε0
2 )

1/4

x s .

We use the expression of the electron flux at the surface of the sheath:

je=
1
4
ne∞√ 8 k BTe

πme

,

and the electron Debye length :

λDe=√ ε0 k BT e

neqe
2 .

The sheath surface positions x s corresponds to the sheath thickness ee s :

ee s(U Δ)=
2
3
(4π )1 /4(−q eU Δ

k BT e
)

3/4

λDe .

For the same potential absolute value, the electron sheath is slightly larger than the 
ion sheath.

Density estimation from the saturation current
The probe collection area depends on the probe sheath thickness, hence on the 

Debye length, hence on the electron density. But the collection area is necessary to 
evaluate the plasma density. 

I eS=qenesves Ae (nes)
The equation to extract the electron density from the electron saturation current is 

difficult  to  resolve.  Numerically,  it  is  possible  to  do  a  recurrent  evaluation  of  the 
electron density and the collection area, starting with no sheath. Since the collection 
area is relatively not very sensitive to the electron density, the recurrent evaluation 
converges rapidly.

Sheath model                                                                                                      31



Bibliography
I.  H. Hutchinson,  Principles of Plasma Diagnostics, 2nd edition, Cambridge Univ. 

Press (2002)
Chap. 3 : Plasma particle flux

J. Wesson, Tokamaks, 3rd edition, Clarendon Press Oxford (2004)
Chap. 9 : Plasma surface interactions
Chap. 10 : Diagnostics

F. F. Chen, Plasma Diagnostics Techniques, Academics Press Inc. New York (1965)
Chap. 4 : Electric probes

N. Hershkowitz,  Sheaths: more complicated than you think,  Phys. of Plasmas  12 
(2005), p 055502

K. U. Riemann, The Bohm criterion and sheath formation, J. Phys. D: Appl. Phys. 24 
(1991), p 493-518

Bibliography                                                                                                      32


