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Introduction
Random time signal properties are introduced.
In the first part we present the difference between finite energy and finite power 

signals, and their frequency spectral and time correlation properties.
The  second  part  shows the  effect  of  the  signal  time  sampling  and  the  digital 

filtering.
The last part is about random variable probability distribution properties (with no 

time variation): the characteristic function, the moments and the cumulants.
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2 Finite power signal

2.1 Finite energy or finite power signals
Finite energy signal

The finite energy signal u t  corresponds to the usual case, where the energy 
(the signal variance) integrated over the whole time converges :

∫−∞
∞∣ut ∣2dt∞

We can apply the classical Fourier analysis. We introduce it in the section 2.2.

Finite power signal
The Fourier analysis is not directly possible, in the case where the signal energy 

diverges.  This  is typically  the  case  for  time  signals  from  instruments  observing 
unstable or turbulent continuous media. 

In this case, the signal st  variance diverges: ∫−∞

+∞
|s (t)|2 dt=+∞

Nevertheless, we can adapt the Fourier analysis if the time mean signal variance 
has a finite value when the integration time tends towards infinity,

lim
T→+∞

1
T∫−T /2

T /2
|s(t )|2dt<+∞

In this case, the signal is a finite power signal.
It is possible to define the power spectrum, an adaptation of the energy spectrum.

The definition of correlation can also be adapted to finite power signals.

2.2 Finite energy signal spectral properties

2.a Fourier transform, autocorrelation and spectrum
For a finite energy signal, the signal Fourier transform is defined:

û (ω)=∫−∞

+∞
u (t )e−iω t dt

Its expression in the frequency domain differs :

ǔ ( f )=∫−∞

+∞
u(t)e−i 2π f t dt=û (2π f )

The signal energy autospectrum is the Fourier transform squared modulus:

U =∣u ∣2

The signal time autocorrelation is:

C  =∫−∞

∞
u∗t utdt

There is a direct relation by Fourier transform between the autocorrelation and the 
autospectrum:

S ( f )=∫−∞

+∞
d τC ( τ)e−i 2π f τ
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The relation between both is  verified by change of variables inside the integrals. 
The calculation is equivalent to that for finite power signals that is showed in section 
3.b.

Parseval's relation is applied to finite energy signals :

 ∫−∞

∞
∣u t ∣2dt=C 0=∫−∞

∞
U  f df

2.b Uncertainty relation
An important  property  of  the Fourier  transform is  the uncertainty  relation.  It  is 

deduced from the  Cauchy-Schwarz  inequality  [Appel2007].  It  is  applicable  if  the 

integrals ∫−∞

∞
t 2∣u t ∣2 dt and ∫−∞

∞
∣u ' t ∣2 dt exist.

In this case, the time domain variances are :

⟨ t2 ⟩=
1

∫−∞

+∞
|u (t)|2 dt

∫−∞

+∞
t 2|u (t)|2 dt

and the frequency domain ones :

⟨ω2⟩=
1

∫−∞

+∞
|û(ω)|2 d ω

∫−∞

+∞
ω2|û (ω)|2d ω=

16π4

∫−∞

+∞
|u (t)|2 dt

∫−∞

+∞
|u ' (t )|2dt

they verify the relation :

〈 t 2〉〈2〉≥1
4

Furthermore 〈 t 2〉〈2〉=1 /4 if and only if u t  is a centered Gaussian function.

〈 t 2〉 and 〈2〉 are  calculated  from  the  integral  of  the  squared  functions  : 

∣u t ∣2 and ∣u ∣2 .

For a centered Gaussian function of variance 2 :

u (t)=e−t 2 /2σ 2

the Fourier transform is also Gaussian :

û (ω)=e−ω
2σ 2 /2

The 2 widths are half of the variances of the Gaussian :

〈 t 2〉= 2

2
and 〈2〉= 1

2 2

The uncertainty relation is in the Gaussian case an equality.
Consequently for the  autocorrelation and the autospectrum, the  narrower is the 

time  width  of  the autocorrelation,  the  wider  is  the  frequency  width  of  the 
autospectrum.

2.3 Spectral properties of finite power signals
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3.a Finite power signal spectral density
The time signals from instruments for observing unstable or even turbulent media 

are stationary random time signals: over time longer than the signal autocorrelation 
time, assumed to be finite, the signal finite time mean variance is stationary.

The energy of such a signal s t  diverge : ∫−∞
∞∣s t ∣2dt=∞

It is not possible to calculate the energy spectrum using the Fourier transform for 
infinite time.

On the other hand, their power, the time mean squared value over a finite duration, 
is finite. We can define the power of the signal by :

⟨|s(t)|2 ⟩= lim
T→+∞

1
T∫−T /2

T /2
|s(t)|2 dt  (2.1)

In  order  to  analyze  the  frequencies  of  the  signal,  we  can  perform  a  Fourier 
transform over a finite time T :

ŝT (ω)=∫−T /2

T /2
s( t)e−iω t dt

We also use the expression on the frequency:

 šT ( f )=∫T s(t )e
−i2 π f t dt=ŝT (2π f )

We introduce the signal frequency power spectrum:

S (ω)= lim
T→+∞

1
T
|ŝT (ω)|

2
 (2.2)

By its quadratic form, unlike the Fourier transform, the properties of the spectral 
density  are  only  related  to  the  stationary  parameters  of  the  signal.  They  are 
independent for example of the choice of the time origin for the Fourier transform.

Spectrum and power time normalization
Spectrum  normalization  is 1/T and  not 1/T 2 .  For  2  distinct  time  intervals
I1=[T ;T ' ] and I 2=[T ' ;T ' ' ] larger  than  the  signal  correlation  time,  the 

squared modulus of s(ω) on the union of both time intervals is :

| ^s1+2(ω)|2=( ŝ1(ω)+ ŝ2(ω))( ŝ1
∗(ω)+ ŝ2

∗(ω))
after multiplication expansion :

| ^s1+2(ω)|2=|ŝ1(ω)|2+|ŝ2(ω)|2+2ℜ( ŝ1(ω) ŝ2
∗(ω))

For uncorrelated intervals, ŝ1(ω) ŝ2
∗(ω)=0 :

| ^s1+2(ω)|2=|ŝ1(ω)|2+|ŝ2(ω)|2

The squared modules of sT (ω) on uncorrelated intervals,  are added. On time

T , much larger than the signal correlation time, the modulus squared |ŝT (ω)|2
does not grow as T 2 , but increases linearly with time T .

3.b Time autocorrelation and frequency spectrum
The signal s (t) time autocorrelation is :
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C ( τ)= lim
T→+∞

1
T∫−T /2

T /2
s∗(t )s(t+τ)dt  (2.3)

Relation between autocorrelation and spectral density
For finite power signals, autocorrelation and power spectrum are related by Fourier 

transform (Wiener-Khintchine relation) .The power spectrum is:

S ( f )= lim
T→+∞

1
T ∫−T /2

T /2 s∗( t)ei 2π f t dt ∫−T /2
T /2 s( t ' )e−i2 π f t ' dt '

2 integrations are nested :

S ( f )= lim
T→+∞

1
T ∫−T /2

T /2 ∫−T /2
T /2 s∗(t) s(t ' )e−i2π f (t '−t)dt dt '

A change of variable is necessary : t '→ τ τ=t '−t d τ=dt ' :

S ( f )= lim
T→+∞

1
T ∫−T

T ∫min(−T /2,τ)
max (T /2+τ , T /2) s∗(t) s(t+τ)e−i 2π f τ dt d τ

Factors are rearranged :

S ( f )= lim
T→+∞

∫−T
T ( 1

T ∫min(−T /2, τ)
max (T /2+τ , T /2 ) s∗(t )s(t+τ)dt )e−i 2π f τ d τ

Hence the relation between the frequency spectrum and time autocorrelation :

S ( f )=∫−∞

+∞
d τC ( τ)e−i 2π f τ

 (2.4)

Parseval's formula
The equivalent of Parseval's formula for finite energy signals relates the signal 

time mean squared absolute value to the integral of the spectrum :

lim
T→+∞

1
T∫−T /2

T /2
|s(t )|2dt=C (0)=∫−∞

+∞
S ( f )df  (2.5)

Uncertainty relationship
There is no direct equivalent to the uncertainty relation for finite power signals. 

Nevertheless, as the spectrum is the Fourier transform of the  autocorrelation, the 
uncertainty relation could be applied to the  autocorrelation: it then gives a relation 
between the width of the autocorrelation and the width of the power spectrum.

3.c Cross-spectrum and cross-correlation
We consider 2 time real finite power signals sa(t ) and sb(t) .

The frequency cross-spectrum between both signals is: 

S ab( f )= lim
T→+∞

1
T

^saT ( f )
∗ ^sbT ( f )

Cross-spectrum phase
The  cross-spectrum includes  for  each  frequency  the  phase  shift  between  the 

signals contrary to the signal autospectrum. 
2 complex  signals,  simplified  to a  single  frequency  mode,  phase  shifted  by
φ2−φ1 :
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sa(t )=~sa e
j (2π f 0 t +φ1)

and

sb(t )=~sbe
j (2π f 0 t +φ2)

This phase shift is present in the argument of the cross-spectrum :

Arg (S ab( f 0))=φ2−φ1

If  the  cross-spectrum  argument  positive  for  a  positive  frequency f 0>0 ,  this 

phase shift is positive, φ2−φ1>0 , the signal sb(t) is ahead of sa(t ) .

3.d Cross-correlations between 2 signals 
The time cross-correlation function between 2 real (or complex) signals, depending 

on the delay between signals, allows a temporal study of the delay between signals:

Cab( τ)= lim
T→+∞

1
T∫−T /2

T /2
sa
∗( t)sb(t+τ)dt

Cross-spectrum and cross-correlation are linked by the Fourier transform: 

S ab( f )=∫−∞
+∞
C ab(τ)e

−i 2 π f τ d τ

Correlation between normalized signals
The  signal  is  normalized  by  subtracting  its  mean  value  and  dividing  it  by  its 

standard deviation :

s̆a(t)=
sa (t )−⟨ sa⟩

σa

For normalized signals, the signal autocorrelation at τ=0 is :

C ă ă(0)=1
For any τ , the cross-correlation between 2 normalized real signals, verifies:

−1≤C ă b̆ (τ)≤1
This is a analogous to the Cauchy-Schwarz inequality.

Cross-correlation rate and delay between signals
The more the signals resemble each other, the larger the cross-correlation is. We 

reduce it to a single value, corresponding to the maximum of the absolute value of 
the cross-correlation:

C ă b̆ ,max=max τ|C ă b̆(τ)|
the  delay τmax for which this maximum is reached provides information on the 

delay between both signals, if the signals are correlated with each other. If this time 
is positive τmax>0 , the signal sb(t) is late on sa(t ) .

Uncorrelated signals
If the normalized signals cross-correlation function is close to zero at any time the 

signals are uncorrelated. 
This does not mean that the signals are statistically independent. 
For 2 signals whose frequency ranges are disjoint, the  cross-spectrum is in fact 
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zero.  By Fourier  transform,  the  cross-correlation is  also zero.  The 2 signals  can 
nevertheless be dependent, for example in the case where the envelope of the signal 
at a faster frequency is correlated to the second signal at a slower frequency.

Even for 2 signals at the same frequency. The cross-correlation is zero when both 
signals are 90° out of phase (in quadrature).

Finite power signal             8



3 Digital discrete-time signals

3.1 Digitizing a signal
The development  of  computing  led  to  the  development  of  digital  discrete-time 

signal processing. An essential step becomes the digitization of the real time signal. 
It is characterized by 2 complementary effects.

Time sampling: The time signal is no longer a continuous-time signal, but a time 
series.

Signal value digitization: The signal can no longer take any real value, but only a 
finite number of values, regularly spaced.

1.a Sampling
The initial signal is a continuous-time signal over time st  . Sampling consists of 

extracting a regular time series xn . The time step is the sampling period t s :

xn=s(nt s)
The operation is equivalent to multiplying the signal by a Dirac comb :

Ψt s(t)=∑
n=−∞

n=+∞

δ( t−nt s)

The sampled signal is:

x ( t)=s( t) t s ∑
n=−∞

n=+∞

δ(t−nt s) . (3.1)

Multiplication by t s conserves the energy (or power) of the sampled signal. 
But in this case, the discrete-time signal has a different unit than the continuous-

time one.

Sampling frequency properties
The Fourier transform of the Dirac comb in time is a Dirac comb in frequency:

Ψ̌t s( f )= f s ∑
m=−∞

m=+∞

δ( f −m f s)

where f s is the sampling frequency :

f s=
1
t s

The Fourier  transform of  the  sampled signal  is  the  convolution  product  of  the 
Fourier transform with a Dirac comb :

x̌ ( f )=š( f )∗∑
m=−∞

+∞

δ( f−m f s)

or :
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x̌ ( f )= ∑
m=−∞

+∞

š( f −m f s) (3.2)

This  property  is  the frequency folding:  the value of  the Fourier  transform at  a 
certain frequency f is the sum of all Fourier transforms of the original continuous-
time  signal  at  frequencies  shifted  by  an  integer  number  of  times  the  sampling 
frequency f−m f s . The signal sampling makes it impossible to distinguish these 
frequencies.

Nyquist criterion
In order to correctly determine the sample rate f s , it is necessary to know, if it 

exists, the continuous-time signal maximum frequency f max :

š( f )=0 if |f |> f max
In order to avoid the frequency aliasing, this maximum frequency must verify :

 f max<
1
2 f s .

This is the Nyquist criterion.

Sampling (or Shannon's) theorem
With this condition, the frequency aliasing is avoided. The initial signal can even be 

deduced from the sampled signal. There is no information loss due to sampling :

s (t)=∑
n=−∞

n=+∞

xn

sin (π( tt s−n))
π (

t
t s
−n)

(3.3)

3.2 Digital Power Spectrum and Coherence
We consider  a finite power  discrete-time signal an . The sampling frequency is
f s=1/ ts and its unit is [A ] .

We  introduce finite  approximations  of  the  power  spectrum  and  correlation  for 
signal finite data number.

2.a Fourier Transform
The continuous-time signal Fourier transform integration formula:

ŝT ( f )=∫−T /2

T /2
s(t )e−i 2π f t dt

is replaced with the finite sum of N Ft indices:

ǎ l=t s∑
k=1

N Ft

ak e
− j

2π
N Ft

(l−1)(k−1)
(3.4)

The discrete-time Fourier transformed signal has the unit [AHz−1] .

Most numerical Fourier transform algorithms omit the time factor t s in order to be 
completely time and frequency independent. In this case, the unit is simply [A ]

Digital discrete-time signals             10



Time and frequency ranges
The  discrete-time  Fourier  transform  exponential does  not  depend  on  time  or 

frequency parameters. 
The time and frequency units reappear if we try to extract the corresponding time 

and frequency series. 
The signal time series corresponds to the data series:

t k=(k−1) t s for 1≤k≤N Ft . 

The time origin corresponds to the first sample. The total time is N Ft t s . 
The Fourier transform complementary frequency series is:

f l=
(l−1)
NFt

f s .

Because of the frequency aliasing, the Fourier transform is periodic with the period 
with  period f s ,  corresponding  to  the  number N Ft .  The  frequency  series  is 
restricted to 1≤l≤N Ft . 

The discrete-time Fourier transform expression with time and frequency series is:

ǎ l=t s∑
k=1

N Ft

ak e
− j 2π f l t k .

Frequency resolution and range
The discrete Fourier transform frequency range is:

0≤ f l≤
N Ft−1
NFt

f s .

The Fourier transform frequency resolution is
1
N Ft

f s . The frequency resolution is 

the inverse of the Fourier transformed series total time N Ft t s .
Because  of  the  frequency  aliasing, the  frequency  range  can  be  changed  to

[−1
2 f s ;( 1

2−
1
N Ft ) f s ] after interverting both halves of the Fourier transformed series 

if N Ft is even:

ǎ '=[ ǎ1+N Ft /2 ... ǎN Ft
, ǎ1... ǎN Ft /2]

with

f l=[ (l−1)
N Ft

− 1
2 ] f s . 

This frequency series is more appropriate with the Nyquist criterion.

Inverse Fourier transform
The continuous-time version of inverse Fourier transform is 

sT (t )=∫−∞

∞
s( f )ei 2π f t df  

Because the frequency resolution is
f s
NFt

, the inverse Fourier transform of ǎ l is:

ak=
f s
N Ft
∑
l=1

N Ft

ǎ le
j

2π
N Ft

(k−1)(l−1)
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The normalized version of the discrete inverse Fourier transform algorithms omit 
the f s frequency factor.

Fast Fourier Transform algorithms
The discrete-time Fourier transform calculation needs N Ft multiplications for all
N Ft indices of the Fourier transformed series ǎ l . The multiplication number is for 

the most naive algorithm, N Ft
2

.

When N Ft can be factorized, the calculation can be done separately  on regular 
smaller data segments. The results can be recombined with less multiplications than 
the naive algorithm. For the most efficient algorithm,  if N Ft is a power of 2,  the 
number of multiplications is of the order of N Ft log2(N Ft) .  For N Ft=1024 ,  the 

multiplication number is reduced by a factor log2(N Ft )/N Ft∼1/100 .

2.b Power Auto- and Cross-Spectral Density
We estimate the frequency power spectrum using data finite sample number.
The  Fourier  transform data  number N Ft choice  depends  on  the  expected 

frequency resolution
1
N Ft

f s  .

If the maximum data number is much larger than N Ft , the discrete time power 
spectrum can be averaged over consecutive segments of N Ft data. This averaging 
method is also known as the standard periodogram. The segment number is N sg .

The finite energy or finite power condition on the signal has no meaning for the 
finite discrete-time signals.  Nevertheless we consider  signals tending to the finite 
power  case  :  signal  statistics  like  the  mean  value  or  standard  deviation  are 
comparable between segments.

Autospectrum
The discrete-time Fourier transform is applied separately on each signal segment

g=1. ..N sg and for each frequency f l=
(l−1)
NFt

f s :

ǎ l , g=t s∑
k=1

N Ft

a(g−1)N Ft+k
e
− j

2π
N Ft

(k−1)(l−1)
.

The continuous-time signal power autospectrum function:

S (ω)= lim
T→+∞

1
T
|ŝT (ω)|

2

is replaced with the segment average power autospectrum series. 
For each segment, the formula is:

Š a[ l , g ]=
1

N Ft t s|ǎl , g|
2

.

The result is averaged on all segments :

Š a[ l ]=
1
N sg
∑
g=1

N sg

Ša [l , g]=
t s

N sgN Ft
∑
g=1

N sg |∑
k=1

N Ft

a(g−1)N Ft+k
e
− j

2π
N Ft

(k−1)(l−1)|
2

. (3.5)
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The frequency series is the same as the Fourier transform one: f l=
(l−1)
NFt

f s .

The spectrum unit is [A2 Hz−1] .

Cross-spectrum
We consider a 2nd discrete-time signal bn synchronized with an (same sampling 

frequency f s=1/ ts , unit [B ] ).

The signal bn segmented discrete-time Fourier transform is (unit [BHz−1] ):

b̌ l , g=t s∑
k=1

N Ft

b(g−1)N Ft+k
e
− j

2π
N Ft

(k−1)(l−1)

The cross-spectrum is defined by replacing the signal squared modulus with the 
product of the 1st signal Fourier transformed conjugate  with the 2nd signal Fourier 
transformed.

For one segment, the cross spectrum is defined as:

Š ab[ l , g]=
1

N Ft t s
ǎl , g
∗ b̌ l , g

The value for N sg segments is:

Š ab[ l ]=
1

N sg N Ft t s∑g=1

N sg

ǎl , g
∗ b̌ l , g (3.6)

The power cross-spectrum unit is [AB Hz−1] .

2.c Correlation

Autocorrelation
Because the discrete-time Fourier transform is defined only for discrete frequency 

values  means  the  time  signal  used  for  the  Fourier  transform  is  considered  as 
periodic.  For the first segment with N Ft data,  the Fourier transform considers the 
signal as a ' k=amod (k , N Ft) .

Because of this, the discrete-time signal autocorrelation is defined as circular.
The continuous-time signal autocorrelation

C ( τ)= lim
T→+∞

1
T∫−T /2

T /2
s∗(t )s( t+τ)dt

is replaced, for the first segment, with:

Ca[m ,1]= 1
N Ft
∑k=1

N Ft

ak
∗amod(k+m−1 , N Ft) for m=1. ..N Ft (3.7)

For each segment separately, the time autocorrelation is:

Ca[m ,g ]=
1
N Ft
∑k=1

N Ft

a(g−1)N Ft+k
∗ a(g−1)N Ft+mod (k+m−1 , N Ft)

The mean value for N sg segments is:

Ca[m ]=
1
N sg
∑g=1

N sg

Ca [m ,g ]
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Ca[m ]=
1

N sgN Ft
∑g=1

N sg ∑k=1

N Ft

a(g−1)N Ft+k
∗ a(g−1)N Ft+mod(k+m−1 , N Ft)

The autocorrelation unit is [A2] .

Correlation Time range
The corresponding time series is limited to N Ft :

 τm=(m−1) ts for m=1. ..N Ft

The delay range is [0 ; (N Ft−1 ) t s ] .The delay τ=0 corresponds to m=1 .

Because of the correlation time periodicity, if N Ft is even, the delay range can be 

changed  to [−N Ft

2 t s ;( N Ft

2 −1) ts ] after  interverting  both  halves  of  the  Correlation 

series

C 'a= [Ca[1+N Ft/2 ] ...Ca[N Ft ] ,Ca[1]...Ca [N Ft /2 ] ]
with

τm=(m−1−N Ft /2) t s .

This time series is more appropriate with the usual short time signal correlation.

Cross-correlation
For one segment the discrete-time signal cross-correlation is:

Ca b[m ,1 ]= 1
N Ft
∑k=1

N Ft

ak
∗bmod (k+m−1 , N Ft )

for m=1. ..N Ft

For N sg segments, the discrete-time cross-correlation is:

Ca b[m ]=
1

N sg N Ft
∑g=1

N sg ∑k=1

N Ft

a(g−1)N Ft+k
∗ b(g−1)N Ft+mod (k+m−1 , N Ft)

The cross-correlation unit is [AB ] .

Relation between spectrum and correlation
The  Fourier  transform  relation  between  the  spectrum  and  the  correlation  for 

continuous-time signals

S ( f )=∫−∞

+∞
d τC ( τ)e−i2π f τ

has  an  equivalent  relation  between  the  discrete-time  signal  spectrum and  the 
correlation

Š a[ l ]=ts∑
m=1

N Ft

Ca [m]e
− j

2π
N Ft

(m−1)(l−1)

and

Š ab[ l ]=t s∑
m=1

N Ft

Cab [m ]e
− j

2π
N Ft

(m−1)(l−1)
.

Because of the fast Fourier transform algorithm optimization, it is faster to compute 
the correlation series through the spectrum than directly from the time series.
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Parseval equivalence
The Parseval relation for time continuous-time signal is:

lim
T→+∞

1
T∫−T /2

T /2
|s(t )|2dt=C (0)=∫−∞

+∞
S ( f )df

The equivalent relation for discrete-time signals for autospectrum is
1

N Ft N sg
∑n=1

N sgN Ft

|an|
2 dt=Ca[1]=

1
N Ft

f s∑l=1

N Ft

Ša[ l ]

and for cross-spectrum
1

N Ft N sg
∑n=1

N sgN Ft

|an||bn|dt=Cab [1]=
1
N Ft

f s∑l=1

N Ft

Š ab[ l ] .

2.d Phase time Coherence
The coherence is the normalized version of discrete-time signal cross-spectrum
For 1 segment this is defined as :

čab[ l , g]=
ǎl , g
∗ b̌l ,g

|ǎl , g
∗ ||b̌l ,g|

For 1 segment, the coherence modulus is one. The coherence phase is, for each 
discrete frequency, the phase shift between both signals:

čab[ l , g]=e
jφ l , g

For N sg segments, the expression is 

čab[ l ]=
1
N sg
∑g=1

N sg ǎl , g
∗ b̌ l , g

|ǎl ,g
∗ ||b̌l ,g|

or

čab[ l ]=
1
N sg
∑g=1

N sg

e
jφl , g

If the phase is the same for each segment, e
jφl ,g=e

jφl ,the coherence modulus 
is:

|̌cab[ l ]|=1
If the phase is completely random for each segments, the sum of the phases on 

each segment  is  like  a  random walk  with  normed steps and completely  random 
directions on the complex plane.  The coherence modulus,  for  a  (large)  segment 
number N sg ,is of the order of :

|̌cab[ l ]|∼
1

√N sg

The coherence modulus measures the signal phase shift coherence in time.

2.e Time Periodicity side effect
The fact that, for the discrete-time Fourier analysis, the finite discrete-time signal is 

considered as periodic have side effects on the circular signal autocorrelation.
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Ca[m ,1]= 1
N Ft
∑k=1

N Ft

ak
∗amod(k+m−1 , N Ft)

If the signal is a random signal with maximum time correlation smaller than
NFt

2 t s
, the side effects are limited : the role of terms due to the signal periodicity is small  
compared to the rest of the signal.

If  the signal is coherent for times larger than
NFt

2 t s ,  the side effects might be 

important.
For  example,  we consider  a  signal  as  a  single  frequency  signal.  If  the  signal 

frequency is a sampling frequency divider, there is no side effect. If not, the discrete-
time signal Fourier transform shows power for all frequencies, especially the ones 
close to the signal frequency.

Windowing and overlapping methods
This  side  effect  can  be  partially  corrected  if  the  segment  limit  is  less  abrupt. 

Alternative methods use different data weighting functions (also known as window 
functions) and data segments overlapping.

3.3 Discrete Linear System and Filtering
Digital filtering consists of applying a discrete linear system to a digital signal. In 

order to describe the behavior of these linear systems, we introduce the z-transform.

3.a Z-transform
For real signals, the Laplace transform is:

s̊ ( p)=s (t)e− pt

For the sampled signals, we introduce the equivalent notion of z-transform:

X (z)=∑
0

+∞

xk z
−k

where the equivalence is obtained by setting :

z=e
− pt s

This z-transform approximates the Fourier transform at the frequency f in the 
case where :

z=e
i 2π f t s

This relation applies the Fourier transform for a sampled signal periodic with period
f s .
The z-transform has properties similar to the Fourier transform: 
• the z-transform is linear; 
• the z-transform of a product is the convolution product of the z-transforms.
For time discrete signals, the convolution product is simply written:

(h∗x )n=∑
k=−∞

+∞

hk xn−k
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3.b Discrete Linear System (DLS)
A Discrete Linear System h is a transformation of a time series xn into another 

time series yn . 

An DLS has the property of being linear and time-invariant. It is characterized by 
its origin impulse response un=δn ,0 . This response is hn :

SLD(u)n=hn

By the DLS time invariance property, the response to an impulse at an index k , 
u ' n=δn , k , is :

SLD(u ' )n=hn−k

Using DLS linearity property, the response to any signal xn , is :

yn=∑
k=−∞

+∞

hn−k xk

The DLS is characterized by the origin impulse response hn . The DLS output is 

the discrete convolution product input with hn .

Causal DLS
An DLS is causal if it verifies :

∀ k<0, hk=0

Stable DLS
A DLS is stable if for any bounded input, the output is bounded :

∀ x∣∑
n=−∞

+∞

|xn|<+∞ , ∑
n=−∞

+∞

|yn|<+∞

The condition holds if and only if :

∑
n=−∞

+∞

|hk|<+∞

DLS z-transfer function
As the output of an  DLS is the convolution product of the input by the transfer 

series, the z-transform of the output is the product of the z-transforms of the input by 
the transfer function:

Y (z)=H ( z)X ( z)
In the frequency domain, this means that the value of the function for a frequency
f , H (ei 2π f t s) , describes the amplitude attenuation, and the phase shift of the 

output signal with respect to the input signal.

3.c DLS finite and Infinite Impulse Response

DLS Infinite Impulse Response (IIR)
In  order  to build  a  system  with  infinite  impulse  response  while  using  a  finite 

number of components, the expression of the output yn , depends on input values 
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xn−k , but also output values yn−k :

yn=∑
k=0

N

ak xn−k−∑
k=1

N

bk yn−k

The largest index N is the order of the system (with aN≠0 or bN≠0 ).
In the z space, this relation is:

Y (z)=∑
k=0

N

ak z
−k X (z)−∑

k=1

N

bk z
−kY (z)

The transfer function is :

H (z)=Y (z)
X (z)

=
∑
k=0

N

ak z
−k

1+∑
k=1

N

bk z
−k

The filter is stable if the poles of the transfer function have a modulus strictly less 
than 1.

Due to  the  denominator,  the  phase  response  of  the  system is  non-linear:  the 
response can be very variable around certain frequencies close to the denominator 
zeros.

DLS Finite impulse response (FIR)
For a finite impulse response SLD, the response can be expressed using a finite 

number of input values :

yn=∑
k=0

N

ak xn−k

The transfer function is simply :

H (z)=∑
k=0

N

ak z
−k

A finite impulse response  DLS is always stable. The phase response is linear: 
there is no harmonic distortion of the signal. Its disadvantage is to require  a much 
higher  order  than  the  infinite  impulse  response  DLS  to  obtain  a  comparable 
frequency response.
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4 Continuous random variables
In  this  part,  we  study  continuous  random variable  :  the  variable  has  no  time 

dependence.
The first  section recalls  some definitions and properties concerning continuous 

random variables. 
The second section deals with random variable pairs.

4.1 Distributions and moments

1.a Definition and examples

Definition
A continuous random variable X is defined by :

• a continuous range of values V (typically ℝ or an interval of ℝ )

• a probability density (or distribution) P .

P is  a  function  (or  more  generally  distribution)  from V to ℝ+ ,  integrable  (

∫min (V )

x

P (x ' )dx ' exists for all x∈V ), and such that ∫V
P(x )dx=1 .

P (x)dx is  the  probability  of  finding  the  variable X between  values x and
x+ dx .

In an improper way, we often identify the random variable X and one of these 
samples x .

Examples
The  most  common  forms  of  probability  density  are  as  follows  ( a∈ℝ et 

b∈ℝ+∗ ).

• The exponential distribution, set to ℝ+ :

P (x)=b e−bx

• The Lorentz (or Cauchy) distribution, defined on ℝ :

P (x)= 1
π

b

(x−a)2+ b2

• The Gaussian (or normal) distribution, defined on ℝ :

P (x)= 1

√2πb
e−( x−a)

2 /2b2

1.b Means and Moments
In the following, we consider the probability distributions defined for the reals.
We define, provided that the following integrals converge, the following values:

• the mean (or mean value) of the distribution µx  :
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〈 x〉=∫ x P (x)dx=µ x
• more generally, the mean of the function f on the cast :

〈 f (x)〉=∫ f (x )P (x)dx
• the m th moment of the distribution (for m∈ℕ∗ ) :

〈 xm〉=∫ xmP(x )dx
• the variance (or mean square deviation) :

σ x
2=〈 x2〉−〈 x 〉2

The integral defining the moments is not necessarily convergent: for example for 
the  Lorentz  distribution,  only  the  first  moment,  the  mean,  exists.  Variance,  and 
subsequent moments, do not exist.

4.2 Characteristic function, moments and 
cumulants

2.a Characteristic function
The characteristic  function of  a random variable is  the Fourier  transform of  its 

distribution:

G (k )=∫e i k x P (x)dx=〈e i k x 〉
The properties of  the probability density induce the following properties for the 

characteristic function:

G (0)=1
and

∀k∈ℝ ,∣G (k )∣≤1
For the Lorentz distribution, the characteristic function has the form:

G (k )=ei k a−b∣k∣

For the Gaussian distribution:

G (k )=ei k a−b
2 k2 /2

2.b Moments and Cumulants

The moment-generating function
If all the distribution moments exist, the characteristic function develops according 

to the series:

 G (k )=1+ i k 〈 x 〉− k 2

2
〈 x2〉 ...+ (ik )m

m!
〈 xm〉 ...

The characteristic function is said to be the moment generating function.

The Cumulant generating function
The cumulants κm of X are defined from the expansion of the logarithm of the 
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characteristic function of X :

logG (k )=i k K1−
k 2

2
K 2 ...+ (ik )

m

m!
K m .. .

Cumulants are algebraic functions of moments. The first four are:

K 1=⟨ x ⟩=µ x
K 2=⟨ x

2⟩−⟨ x ⟩2=σ x
2

K 3=⟨ x
3⟩−3 ⟨ x2⟩⟨ x ⟩+2 ⟨ x ⟩3

K 4=⟨ x
4⟩−4 ⟨ x3⟩ ⟨ x ⟩−3 ⟨ x2⟩2+12 ⟨ x2⟩ ⟨ x ⟩2−6 ⟨ x ⟩4

The first cumulant is the mean. 

The second cumulant is the variance, the square of the standard deviation, σ x . 

For  the  Gaussian  distribution,  by  identifying  the  form  of logG (k ) : K 1=a ,
K 2=b and K m=0 if m≥3 .

Unlike moments, the cumulants, from the second, do not depend on the centering 
of  the  function  :  if  we  shift  the  random  variable x , x̂= x−a ,  the  probability 
distribution verifies : P̂ (x)=P (x−a) .The characteristic function is then modified 

by : Ĝ (k )=G (k )e−i k a .  Then only the first term of the series expansion of the 

characteristic  function  logarithm is  modified  : K̂ 1=K1−a ,  and  for  any m≥2 ,

K̂ m=K m .

The  centered  variable  associated  with x ,  often  noted x̃ ,  defined  by
x̃=x−〈 x 〉 then simplifies the calculation of cumulants from the moments :
~K 1=0

K 2=
~K 2=⟨~x

2⟩=σ x
2

K 3=
~K3=⟨~x

3⟩

K 4=
~K 4=⟨~x

4⟩−3 ⟨~x 2⟩2

The calculation of the cumulants for the centered variable, shows that the third 
cumulant  is  non-zero,  provided  that  the  distribution P is  not  symmetrical  with 
respect to its mean

We define the coefficient of distribution skewness (asymmetry) by normalizing this 
third cumulant by the cube of the standard deviation :

γ1=
K 3

σ x
3 =

⟨~x3 ⟩
σ x

3

The fourth cumulant is strictly positive if the values far from the mean value have a 
significant  weight  compared  to  those  close,  using  the  Gaussian  distribution  as 
reference. we define the fourth cumulant as the kurtosis (the distribution flattening) 
by normalizing this fourth cumulant by the squared variance:

γ2=
K 4

σx
4 =

⟨~x 4⟩
σ x

4 −3
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4.3 Coupled random variables

3.a Coupled random variables and independence
This  section  introduces  the  concept  of n random  real  variables x1 ... xn , 

defined  on n real  intervals V 1 ... V n .  They  are  coupled  by  the  probability 

distribution  to n variables, P (x1 , ... , xn) ,  defined  on (V 1 , ... ,V n) to  ℝ+ , 
integrable and verifying : 

∫V 1

...∫V n

P (x1 , ... , xn)dx1 ...dxn=1 .

The  marginal  distribution  for  each  variable Pm is  the  probability  distribution 
specific to each variable, knowing nothing about the value of the other variables. It is 
deduced from the global distribution by integration over all the other variables :

P 1(x1)=∫V 2

...∫V n

P(x1 , ... , xn)dx2...dxn

P 2(x2)=∫V 1
∫V 3

...∫V n

P(x1 , ... , xn)dx1 dx3...dxn ...

Independence
The variables from x1 to xn are independent if :

 ∀(x1, ... , xn)∈(V 1 , ... ,V n)  P (x1 , ... , xn)=∏m=1

n

Pm(xm)

Conditional probability
For simplicity, we limit ourselves to 2 variables. The concept easily generalizes to
n variables.

The conditional probability, P (x1∣x2) , is the probability of x1 knowing the value 

of the second, x2 . its value is:

P (x1∣x2)=
P (x1, x2)
P2(x2)

Conditional probability is verifies :

∫V 1

P(x1∣x2)dx1=1

The variables x1 and x2 are independent if and only if:

∀( x1 , x2)∈(V 1 ,V 2) P(x1∣x2)=P1(x1)

3.b Characteristic function, moments and cumulants

Moments
It is possible to define cross moments between variables:

〈 x1
m1 ... xn

mn 〉=∫V 1

...∫V n

x1
m1 ... xn

mn P (x1 , ... , xn)dx1 ...dxn

The Cauchy-Schwarz inequality implies that for any pair of random variables (if the 
order 2 moments exist):

〈 x1 x2〉
2≤〈 x1

2〉 〈 x2
2〉
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The notion of characteristic function can be generalized :

G (k1 , ... , k n)=∫V 1

...∫V n

e
i k1 x1+ ...+ i kn xnP (x1 , ... , xn)dx1 ...dxn

If  the  variables  are  independent,  the  characteristic  function  of  the  sum  of 
independent variables is the product of the characteristic functions of each variable:

X 1 ... X n independent ⇒ G X 1+...+ X n
(k1 , ... , k n)=∏m=1

n
G X m

(km)

Cumulants
The  cumulants  can  also  be  generalized  to  the  multidimensional  case,  by 

developing in series the logarithm of the characteristic function on all the variables. 
Order m cumulants form a matrix of size nm .

The first  cumulants are numbered n :  these are the  mean values along each 
direction:

µm=〈 xm〉
The  second  cumulants  form  a  matrix  of  size n2 ,  the covariance  matrix.  Its 

elements are :

σml=〈 xm xl 〉−〈 xm〉〈 xl 〉
This matrix is symmetric.
The diagonal terms are the variances specific to each variable. The off-diagonal 

terms are the co-variances.
If the covariance of 2 variables is zero, these variables are said to be uncorrelated. 

Independent variables are always uncorrelated. But the converse is not true:  the 
condition of independence of the variables is much more restrictive than the notion of 
correlation of their values.

We introduce the notion of correlation coefficient :

ρml=
σml

σmσ l

Due to the Cauchy-Schwarz inequality:

∣ρml∣≤1

Multivariate Gaussian probability law
The Gaussian form of the probability law can be generalized to n dimensions. Lth 

vector x̄=(x1 , ... , xn) gathers  all  the  random  variables.  The  Gaussian  form  is 
determined by the vector of means µ̄=(µ1 , ... , µn) and by the covariance matrix,
Σ , definite positive :

P ( x̄)= 1

(2π)n /2det (Σ)1/ 2
e−( x̄−µ̄) .Σ

−1 .( x̄−µ̄)/2

The generating function of the multidimensional Gaussian law is written for the 
vector k̄=(k 1 , ... , kn) :

G ( k̄ )=ei k̄ . µ̄−k̄ .Σ . k̄ /2
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