INTRODUCTION TO
RANDOM SIGNALS

(Version 09/2025)

Cyrille HONORE

cyrille.honore@polytechnique.edu

Laboratoire de Physique des Plasmas
CNRS - Sorbonne Université — UPSaclay - ObsPM
Ecole Polytechnique, IPParis (Palaiseau, France)

™ SORBONNE

[ ]
& H e % gw"’ERS'TE universite

5555555555 PARIS-SACLAY




Introduction
Random time signal properties are introduced.

In the first part we present the difference between finite energy and finite power
signals, and their frequency spectral and time correlation properties.

The second part shows the effect of the signal time sampling and the digital
filtering.

The last part is about random variable probability distribution properties (with no
time variation): the characteristic function, the moments and the cumulants.
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2 Finite power signal

2.1 Finite energy or finite power signals

Finite energy signal

The finite energy signal u(7) corresponds to the usual case, where the energy
(the signal variance) integrated over the whole time converges :

22 u(e)* dt <+oo
We can apply the classical Fourier analysis. We introduce it in the section 2.2.

Finite power signal
The Fourier analysis is not directly possible, in the case where the signal energy
diverges. This is typically the case for time signals from instruments observing
unstable or turbulent continuous media.

In this case, the signal s(z) variance diverges: f:oo |s(t)|2 dt =+

Nevertheless, we can adapt the Fourier analysis if the time mean signal variance
has a finite value when the integration time tends towards infinity,

) 1 p7/2
Tliizflw T f_m |s(t)|2dt<+oo

In this case, the signal is a finite power signal.
It is possible to define the power spectrum, an adaptation of the energy spectrum.
The definition of correlation can also be adapted to finite power signals.

2.2 Finite energy signal spectral properties

2.a Fourier transform, autocorrelation and spectrum
For a finite energy signal, the signal Fourier transform is defined:

it((n):f: u(t)e™ " dt
Its expression in the frequency domain differs :
il )= ult)e ™ dr=i(27 1)
The signal energy autospectrum is the Fourier transform squared modulus:
U(w)=li(w)’
The signal time autocorrelation is:
C(T)Zfo_ow u (t)u(t+)dt

There is a direct relation by Fourier transform between the autocorrelation and the
autospectrum:

s(f)=) dvc(x)e™r
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The relation between both is verified by change of variables inside the integrals.
The calculation is equivalent to that for finite power signals that is showed in section
3.b.

Parseval's relation is applied to finite energy signals :
+o0 2 +o0
|- (o de=c(o)=]" u(f)df

2.b Uncertainty relation

An important property of the Fourier transform is the uncertainty relation. It is
deduced from the Cauchy-Schwarz inequality [Appel2007]. It is applicable if the

integrals fi: t|u(t)] dr and fi: ' (1) dr exist.

In this case, the time domain variances are :

T ——— s Y P

| lulr)ar

and the frequency domain ones :

) . 1 +00 2 A 2 . 163‘[4 +00 , )
(0))=—% J_, olalo)do=—= J o () ar

- (o de [ e ar

they verify the relation :

I

Furthermore (¢*)(w’)=1/4 ifandonlyif u(¢) is a centered Gaussian function.

(t*) and (w”) are calculated from the integral of the squared functions :
u(2)f" and i (o))"
For a centered Gaussian function of variance ¢ :

» (l‘):e—tz/ZO2

the Fourier transform is also Gaussian :

—w'o’2

A

i(o)=e
The 2 widths are half of the variances of the Gaussian :
1

207
The uncertainty relation is in the Gaussian case an equality.

Consequently for the autocorrelation and the autospectrum, the narrower is the
time width of the autocorrelation, the wider is the frequency width of the
autospectrum.

(=2 and (w)=

2.3 Spectral properties of finite power signals
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3.a Finite power signal spectral density

The time signals from instruments for observing unstable or even turbulent media
are stationary random time signals: over time longer than the signal autocorrelation
time, assumed to be finite, the signal finite time mean variance is stationary.

The energy of such a signal s(¢) diverge: [™%|s(¢)] dt=+o0

It is not possible to calculate the energy spectrum using the Fourier transform for
infinite time.

On the other hand, their power, the time mean squared value over a finite duration,
is finite. We can define the power of the signal by :

1 pr1/
Us(oFy= tim [, s e)f de 2.1)

In order to analyze the frequencies of the signal, we can perform a Fourier
transform over a finite time T :
T/2

S}(UJ)ZI_M s(t)e " dt

We also use the expression on the frequency:
SVT(f):fT S(t)e_lznftdt:SAT(znf)

We introduce the signal frequency power spectrum:

S(ow)=lim %|§T(oo)|2 (2.2)

T >+

By its quadratic form, unlike the Fourier transform, the properties of the spectral
density are only related to the stationary parameters of the signal. They are
independent for example of the choice of the time origin for the Fourier transform.

Spectrum and power time normalization
Spectrum normalization is 1/7 and not 1/7? . For 2 distinct time intervals
I[,=|[T,;T'] and I,=[T';T''] larger than the signal correlation time, the
squared modulus of s() on the union of both time intervals is :

572 (@)P=(s1 (@) +5, () (5] (0)+53 (w))
after multiplication expansion :
|S1A+2((D)|2:|SA1((D)|2+|§2(m)|2+2m(§1((’0) ;((’O))
For uncorrelated intervals, §,(o)s:(w)=0 :
|S1A+2((1))|2=|§1((1))|2+|§2((1))|2
The squared modules of ST((D) on uncorrelated intervals, are added. On time
T , much larger than the signal correlation time, the modulus squared |§T(U))|2
does not grow as T , but increases linearly with time T .

3.b Time autocorrelation and frequency spectrum
The signal s (t) time autocorrelation is :

Finite power signal 5



c(v)=tim ~ [

T+

s*(t)s(t+7T)dt (2.3)

-T/2

Relation between autocorrelation and spectral density
For finite power signals, autocorrelation and power spectrum are related by Fourier
transform (Wiener-Khintchine relation) .The power spectrum is:

S(f)=tim |77, s*(t)e™™  ar [T, s(t")e ™" dr’

T >+
2 integrations are nested :
S(f)=lim +J75, [T7, 5™ (1) st Je P dr !
T%+w

A change of variable is necessary : 't t=t'—t dt=dt'
S(f)=tim 717 ™ s (1) s(e+w)e ™ drd v
T >+
Factors are rearranged :
S(f)= tim 1 (G L™ s (¢)s(1+) dr)e ™ d v
T >+

Hence the relation between the frequency spectrum and time autocorrelation :

=[" dvc(x)e (2.4)

Parseval's formula

The equivalent of Parseval's formula for finite energy signals relates the signal
time mean squared absolute value to the integral of the spectrum :

tim 7 [0 st Par=c(0)=["" s(7)ar (2.5)

Uncertainty relationship

There is no direct equivalent to the uncertainty relation for finite power signals.
Nevertheless, as the spectrum is the Fourier transform of the autocorrelation, the
uncertainty relation could be applied to the autocorrelation: it then gives a relation
between the width of the autocorrelation and the width of the power spectrum.

3.c Cross-spectrum and cross-correlation

We consider 2 time real finite power signals sa(t) and Sb(t) :
The frequency cross-spectrum between both signals is:

Sul/)= lim (1) (f)

Cross-spectrum phase

The cross-spectrum includes for each frequency the phase shift between the
signals contrary to the signal autospectrum.

2 complex signals, simplified to a single frequency mode, phase shifted by
©— Py

Finite power signal 6



g (t)::g\' ej(ZTCfoH'CPl)

and

Sb(t):%ej(2”f0t+(9z)

This phase shift is present in the argument of the cross-spectrum :
Sab(fo)):(pZ_cpl

If the cross-spectrum argument positive for a positive frequency f,>0 , this
phase shift is positive, ¢®,—¢,;>0 , the signal sb(t) is ahead of sa(t) :

Arg

3.d Cross-correlations between 2 signals

The time cross-correlation function between 2 real (or complex) signals, depending
on the delay between signals, allows a temporal study of the delay between signals:
T2

.1 *
Colt)=tim 77 si(1)s,l+0)

Cross-spectrum and cross-correlation are linked by the Fourier transform:
S, )= Cab(T)e_iznfrd‘c

Correlation between normalized signals

The signal is normalized by subtracting its mean value and dividing it by its
standard deviation :

§a(t)_ Sa(t)0_<sa>

a

For normalized signals, the signal autocorrelation at t=0 is:
Caa(o)zl

Forany T |, the cross-correlation between 2 normalized real signals, verifies:
—1=<C,;(7)=1

This is a analogous to the Cauchy-Schwarz inequality.

Cross-correlation rate and delay between signals

The more the signals resemble each other, the larger the cross-correlation is. We
reduce it to a single value, corresponding to the maximum of the absolute value of
the cross-correlation:

Cﬁi?,max Cél;(r)‘

the delay Tuau for which this maximum is reached provides information on the
delay between both signals, if the signals are correlated with each other. If this time

is positive T,..>0 ,the signal s,(¢) islateon s,(z) .

=max.

Uncorrelated signals

If the normalized signals cross-correlation function is close to zero at any time the
signals are uncorrelated.

This does not mean that the signals are statistically independent.
For 2 signals whose frequency ranges are disjoint, the cross-spectrum is in fact

Finite power signal 7



zero. By Fourier transform, the cross-correlation is also zero. The 2 signals can
nevertheless be dependent, for example in the case where the envelope of the signal
at a faster frequency is correlated to the second signal at a slower frequency.

Even for 2 signals at the same frequency. The cross-correlation is zero when both
signals are 90° out of phase (in quadrature).

Finite power signal 8



3 Digital discrete-time signals
3.1 Digitizing a signal

The development of computing led to the development of digital discrete-time
signal processing. An essential step becomes the digitization of the real time signal.
It is characterized by 2 complementary effects.

Time sampling: The time signal is no longer a continuous-time signal, but a time
series.

Signal value digitization: The signal can no longer take any real value, but only a
finite number of values, regularly spaced.

1.a Sampling

The initial signal is a continuous-time signal over time s(¢) . Sampling consists of
extracting a regular time series x, . The time step is the sampling period s :

xn:s(nts)
The operation is equivalent to multiplying the signal by a Dirac comb :
w, ()= 2 d(r—nt)

The sampled signal is:

n=+oo

x(t)=s(t)t, D, 8(t—nt,) . (3.1)

n=-—oo

Multiplication by fs conserves the energy (or power) of the sampled signal.
But in this case, the discrete-time signal has a different unit than the continuous-
time one.
Sampling frequency properties
The Fourier transform of the Dirac comb in time is a Dirac comb in frequency:

W, (f)=f 2. 8(f-mf)

where [ is the sampling frequency :
1

fs=7

The Fourier transform of the sampled signal is the convolution product of the
Fourier transform with a Dirac comb :

%(£)=3(7)% Y o(f-m7)

m=—oo

or:

Digital discrete-time signals 9



+00

X(f)= 2 s(f-mf,) (3.2)

nm=—oo

This property is the frequency folding: the value of the Fourier transform at a
certain frequency f is the sum of all Fourier transforms of the original continuous-
time signal at frequencies shifted by an integer number of times the sampling
frequency f—m f, . The signal sampling makes it impossible to distinguish these
frequencies.

Nyquist criterion
In order to correctly determine the sample rate fs , it is necessary to know, if it
exists, the continuous-time signal maximum frequency f :

S(L)=0 111> f

In order to avoid the frequency aliasing, this maximum frequency must verify :

1
fmax<7fs .

This is the Nyquist criterion.

Sampling (or Shannon's) theorem

With this condition, the frequency aliasing is avoided. The initial signal can even be
deduced from the sampled signal. There is no information loss due to sampling :

n=+0  Sin

n(r—n)

(3.3)

3.2 Digital Power Spectrum and Coherence

We consider a finite power discrete-time signal d» . The sampling frequency is
fs=1/t; andits unitis [A] .

We introduce finite approximations of the power spectrum and correlation for
signal finite data number.

2.a Fourier Transform

The continuous-time signal Fourier transform integration formula:
T2

A~ _ —i2n
ST(f)—f_mS(t)e It dt
is replaced with the finite sum of NV indices:

—J
d,:tSkZ: ae " (3.4)

The discrete-time Fourier transformed signal has the unit [AHz_l] :

Most numerical Fourier transform algorithms omit the time factor s in order to be
completely time and frequency independent. In this case, the unit is simply [A]

Digital discrete-time signals 10



Time and frequency ranges

The discrete-time Fourier transform exponential does not depend on time or
frequency parameters.

The time and frequency units reappear if we try to extract the corresponding time
and frequency series.

The signal time series corresponds to the data series:

=(k—1)t, for 1<k<Np .
The time origin corresponds to the first sample. The total time is N g .
The Fourier transform complementary frequency series is:

=ty

Because of the frequency aliasing, the Fourier transform is periodic with the period
with period fs corresponding to the number Ny . The frequency series is
restricted to 1</<Np .

The discrete-time Fourier transform expression with time and frequency series is:
N,

v _]2Tl:fltk
al—tsz ae :
k=1

Frequency resolution and range
The discrete Fourier transform frequency range is:

Np—
0<fi=—x_— -/,

1
The Fourier transform frequency resolution is N—Ffs . The frequency resolution is
t

the inverse of the Fourier transformed series total time Ng 1, .

Because of the frequency aliasing, the frequency range can be changed to

1
[_jfs;(j_N_Ft)fs] after interverting both halves of the Fourier transformed series

if N is even:

v

'_ 4 v A4 A4
a'=[a .y p.dy ,a...ay p]
with

fl_ fs'

This frequency series is more appropriate with the Nyquist criterion.

(1-1) 1

"N, 2

Inverse Fourier transform
The continuous-time version of inverse Fourier transform is

sp(0)=" s(f)e™ " df

Because the frequency resolution is , the inverse Fourier transform of d; is:

Sh

Ft

Digital discrete-time signals 11



The normalized version of the discrete inverse Fourier transform algorithms omit
the f, frequency factor.

Fast Fourier Transform algorithms
The discrete-time Fourier transform calculation needs Nr multiplications for all
N, indices of the Fourier transformed series d; . The multiplication number is for
the most naive algorithm, N,zv, :
When Npr can be factorized, the calculation can be done separately on regular

smaller data segments. The results can be recombined with less multiplications than
the naive algorithm. For the most efficient algorithm, if Np is a power of 2, the

number of multiplications is of the order of N.log,(N,,) . For Np=1024 | the
multiplication number is reduced by a factor log,(N,,)/N,,~1/100 .

2.b Power Auto- and Cross-Spectral Density

We estimate the frequency power spectrum using data finite sample number.
The Fourier transform data number Np choice depends on the expected

1
frequency resolution 77— f,

If the maximum data number is much larger than N, |, the discrete time power
spectrum can be averaged over consecutive segments of N data. This averaging
method is also known as the standard periodogram. The segment numberis Ny, .

The finite energy or finite power condition on the signal has no meaning for the
finite discrete-time signals. Nevertheless we consider signals tending to the finite
power case : signal statistics like the mean value or standard deviation are
comparable between segments.

Autospectrum
The discrete-time Fourier transform is applied separately on each signal segment

g=1...N and for each frequency fl—(l]\?Fl)fs ;

< ~ ik 1)-1)

=h 2 W,

The continuous-time signal power autospectrum function:

S A
S(w)=lim ?|ST((D)|2

T >+
is replaced with the segment average power autospectrum series.
For each segment the formula is:

S[l g] Nt|alg|

The result is averaged on all segments :

27 2
. f, NZ i ~J7, (k=1)(1=1) (3.5)
~—— a e :
pey g th A= g lNFr+k

Digital discrete-time signals 12



(1)

The frequency series is the same as the Fourier transform one: f,= N f, -

The spectrum unitis [A°Hz '] .

Cross-spectrum
We consider a 2™ discrete-time signal b. synchronized with @. (same sampling
frequency f,=1/t, ,unit [B] ).

The signal b. segmented discrete-time Fourier transform is (unit [BHz_l] ):
Np 2w

) k=) (1)
bl,g:tskzl b(g—])NF,+k€

The cross-spectrum is defined by replacing the signal squared modulus with the
product of the 1% signal Fourier transformed conjugate with the 2" signal Fourier
transformed.

For one segment, the cross spectrum is defined as:

1 .
Sab[l gl= N1, algblg

The value for NV, segments is:

Ny,
Sulll=§y—N— Z (36)

The power cross-spectrum unitis |AB Hz ] :

2.c Correlation

Autocorrelation

Because the discrete-time Fourier transform is defined only for discrete frequency
values means the time signal used for the Fourier transform is considered as
periodic. For the first segment with N data, the Fourier transform considers the

signal as 4 k= %od(k,N,,) -
Because of this, the discrete-time signal autocorrelation is defined as circular.
The continuous-time signal autocorrelation

T/2

C(t)= lim —f 72 S s*(¢)s(t+7)dt

T+
is replaced, for the first segment, with:
1 N
Ca[m ’l]zN_Ft ZkZl ay am()d(k+m—1,NFf) for m= L. NF’ (37)

For each segment separately, the time autocorrelation is:

Ca[m ) g]:N_ﬂZk:I a(g—l)NFl+ka(g—l)NF[+m0d(k+m—1,NF,)

The mean value for NV, segments is:

1 <M
Ca[m]zN—Sng_l C.lm, g]

Digital discrete-time signals 13



Cl ~N_.N, N Z Zkl )N, +k%(g—1)N,,+mod(k+m—1,N,,)
The autocorrelation unit is [Az] .

Correlation Time range
The corresponding time series is limited to N :

'Cm:(m—l)ts for m=1. W N g,

.The delay T=0 correspondsto m=1 .
Because of the correlation time periodicity, if Vr is even, the delay range can be

The delay range is [0, (N —1]t,

N, N p : , :
changed to —Tts;(T—l)ts after interverting both halves of the Correlation
series

C',=|C,[1+N/2]..C[N],C,[1]..C,[N/2]]
with

1, =(m—1-N,/2)t,
This time series is more appropriate with the usual short time signal correlation.
Cross-correlation
For one segment the discrete-time signal cross-correlation is:
1 . _
Cab[m’l]:N_thk:I b o (kam—1,,,) for M=1Np

For N segments the discrete-time cross-correlation is:

C N N Z Z g 1NFt+kb( —1)N,,+mod (k+m—1,N,,)
The cross-correlation unit is [AB] .

Relation between spectrum and correlation

The Fourier transform relation between the spectrum and the correlation for
continuous-time signals

ZKZ dtC(r)e_"ZJ‘fr

has an equivalent relation between the discrete-time signal spectrum and the
correlation
Np 21

m—1)([—1
N=r3" c fm]e 7"
m=1

and
Nl't . 2317

. (m=1)(i-1)
l=1 Z C [mle ™ :

Because of the fast Fourier transform algorithm optimization, it is faster to compute
the correlation series through the spectrum than directly from the time series.

Digital discrete-time signals 14



Parseval equivalence
The Parseval relation for time continuous-time signal is:

tim 7 [0 st Par=c(0)=["" s(7)ar

The equivalent relation for discrete-time signals for autospectrum is

N, N, N Z |a| dt=C -N, fZ
and for Cross- spectrum
1 Ny o~
N 2oy ladbidr=Co =5 f 2, Sull]

2.d Phase time Coherence

The coherence is the normalized version of discrete-time signal cross-spectrum
For 1 segment this is defined as :

For 1 segment, the coherence modulus is one. The coherence phase is, for each
discrete frequency, the phase shift between both signals:

éull,gl=e' ™
For Ny segments the expression is

N Z algélg’

or
N

1 s
ab[l]:ngZ ! e]CPl,g

g=1

<

If the phase is the same for each segment, eJ(p’ g—e]q)’ ,the coherence modulus

is:
cull]=1
If the phase is completely random for each segments, the sum of the phases on
each segment is like a random walk with normed steps and completely random
directions on the complex plane. The coherence modulus, for a (large) segment

number N, |is of the order of :
1

Eab[l]l"“\/’]v;

The coherence modulus measures the signal phase shift coherence in time.

2.e Time Periodicity side effect

The fact that, for the discrete-time Fourier analysis, the finite discrete-time signal is
considered as periodic have side effects on the circular signal autocorrelation.

Digital discrete-time signals 15



1 <N
Ca[m71]_NFt k= lakamod(kﬂn—l,NF,)

, : : : , : : N,
If the signal is a random signal with maximum time correlation smaller than TFtS

, the side effects are limited : the role of terms due to the signal periodicity is small
compared to the rest of the signal.

the side effects might be

N
If the signal is coherent for times larger than TFtS ,
important.

For example, we consider a signal as a single frequency signal. If the signal
frequency is a sampling frequency divider, there is no side effect. If not, the discrete-
time signal Fourier transform shows power for all frequencies, especially the ones
close to the signal frequency.

Windowing and overlapping methods

This side effect can be partially corrected if the segment limit is less abrupt.
Alternative methods use different data weighting functions (also known as window
functions) and data segments overlapping.

3.3 Discrete Linear System and Filtering

Digital filtering consists of applying a discrete linear system to a digital signal. In
order to describe the behavior of these linear systems, we introduce the z-transform.

3.a Z-transform
For real signals, the Laplace transform is:

o _ — pt
$(p)=s(t)e
For the sampled signals, we introduce the equivalent notion of z-transform:

+00
:Z Xk 7
0

where the equivalence is obtained by setting :

— Pl
i—=e

This z-transform approximates the Fourier transform at the frequency f in the

case where :
i2nft,
7=e

This relation applies the Fourier transform for a sampled signal periodic with period

fs

The z-transform has properties similar to the Fourier transform:
the z-transform is linear;
the z-transform of a product is the convolution product of the z-transforms.
For time discrete signals, the convolution product is simply written:
h*x Z hx,

k=—o0

Digital discrete-time signals 16



3.b Discrete Linear System (DLS)

A Discrete Linear System h is a transformation of a time series x, into another
time series y,, .

An DLS has the property of being linear and time-invariant. It is characterized by
its origin impulse response un=6n,0 . This response is £,

SLD(u),=h
By the DLS time invariance property, the response to an impulse at an index k& |,
u',=0,, ,is:

SLD(u'),=h,_,
Using DLS linearity property, the response to any signal x, ,is:

yn: Z hn—k xk

k=—w

The DLS is characterized by the origin impulse response %, . The DLS output is

n

the discrete convolution product input with 7,

Causal DLS
An DLS is causal if it verifies :

Y k<0, h,=0

Stable DLS
ADLSIi |s stable if for any bounded input, the output is bounded :

Vx| Z |x |<+oo , Z |y ‘<+oo

The condition holds if and only if :
Z |hk|<+oo

DLS z-transfer function

As the output of an DLS is the convolution product of the input by the transfer
series, the z-transform of the output is the product of the z-transforms of the input by
the transfer function:

Y(z)=H(z)X(z)
In the fre% ency domain, this means that the value of the function for a frequency
I, H( Icft) , describes the amplitude attenuation, and the phase shift of the
output signal with respect to the input signal.

3.c DLS finite and Infinite Impulse Response

DLS Infinite Impulse Response (lIR)
In order to build a system with infinite impulse response while using a finite
number of components, the expression of the output Y. , depends on input values
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X.—r , but also output values Y-« :

N N
yn:Z akxn—k_z by, «
k=0 k=1

The largest index N is the order of the system (with ay#0 or by#0 ).
In the z space, this relation is:

The filter is stable if the poles of the transfer function have a modulus strictly less
than 1.

Due to the denominator, the phase response of the system is non-linear: the
response can be very variable around certain frequencies close to the denominator
Zeros.

DLS Finite impulse response (FIR)

For a finite impulse response SLD, the response can be expressed using a finite
number of input values :

N
= Z ap X,
k=0

The transfer function is simply :

N
=2 a,z"
= akz
k=0

A finite impulse response DLS is always stable. The phase response is linear:
there is no harmonic distortion of the signal. Its disadvantage is to require a much
higher order than the infinite impulse response DLS to obtain a comparable
frequency response.
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4 Continuous random variables

In this part, we study continuous random variable : the variable has no time
dependence.

The first section recalls some definitions and properties concerning continuous
random variables.

The second section deals with random variable pairs.

4.1 Distributions and moments

1.a Definition and examples
Definition
A continuous random variable X is defined by :
a continuous range of values V' (typically IR or an interval of IR )
a probability density (or distribution) P .
P is a function (or more generally distribution) from ¥V to [R* , integrable (

fx P(x')dx' existsforall xeV ), and such that fVP(x)deI .

min (V)
P(x)dx is the probability of finding the variable X between values x and
x+dx .

In an improper way, we often identify the random variable X and one of these
samples x .

Examples
The most common forms of probability density are as follows ( a€IR et

beR™ ).
The exponential distribution, setto R* :
P(x)=be ™
The Lorentz (or Cauchy) distribution, defined on IR :
1 b
Plx)==—F—
() T(x—a)+b
The Gaussian (or normal) distribution, defined on IR :
P(x): e—(x—a)2/2b2
2mwh
1.b Means and Moments

In the following, we consider the probability distributions defined for the reals.
We define, provided that the following integrals converge, the following values:

the mean (or mean value) of the distribution .
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(x)= f xP(x)dx=pu,
more generally, the mean of the function f on the cast:

x)>=ff(x P(x)dx

the m™ moment of the distribution (for meIN* ) :

<xm>=fme(x dx
the variance (or mean square deviation) :
2_ /.2 2
o, =(x")=(x)
The integral defining the moments is not necessarily convergent: for example for

the Lorentz distribution, only the first moment, the mean, exists. Variance, and
subsequent moments, do not exist.

4.2 Characteristic function, moments and
cumulants

2.a Characteristic function

The characteristic function of a random variable is the Fourier transform of its
distribution:

:feikxP(X)dX:<€ikx>

The properties of the probability density induce the following properties for the
characteristic function:

G(0)=1
and

G(k) <1

For the Lorentz distribution, the characteristic function has the form:
G(k):eika—b|k|
For the Gaussian distribution:
G<k>:eika—b2k2/2
2.b Moments and Cumulants

The moment-generating function

If all the distribution moments exist, the characteristic function develops according
to the series:

Gk)=1+ ik ()5 () B o)

The characteristic functlon is said to be the moment generating function.

The Cumulant generating function
The cumulants K, of X are defined from the expansion of the logarithm of the
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characteristic function of X :
(ik)"

m!

K

2
log G (k)=ikK,~% K, ..+

mee:

Cumulants are algebraic functions of moments. The first four are:

K,=(x)=u,

K,=(x")~(x)'=0,

Ky=(x")=3(x")(x)+2(x)’

K, =(x")=4(x")(x)=3(x")+12(x") (x)" =6 (x)’
The first cumulant is the mean.
The second cumulant is the variance, the square of the standard deviation, O, .
For the Gaussian distribution, by identifying the form of logG(k) . K,=a ,
K,=b and K,=0 if m>3 .

Unlike moments, the cumulants, from the second, do not depend on the centering
of the function : if we shift the random variable x , x=x—a , the probability

distribution verifies : P (x)=P(x—a) .The characteristic function is then modified
by : G(k)=G(k)e "¢ . Then only the first term of the series expansion of the
characteristic function logarithm is modified : KIZKl—a , and for any m>2 ,
K =K, .
The centered variable associated with x , often noted x , defined by
Xx=x—(x) then simplifies the calculation of cumulants from the moments :

1
2

=!

(

3 (
K,=K,=(%"-3(3")
The calculation of the cumulants for the centered variable, shows that the third

cumulant is non-zero, provided that the distribution P is not symmetrical with
respect to its mean

We define the coefficient of distribution skewness (asymmetry) by normalizing this
third cumulant by the cube of the standard deviation :
Y SLEp x)
1 03 0,3

X X

The fourth cumulant is strictly positive if the values far from the mean value have a
significant weight compared to those close, using the Gaussian distribution as
reference. we define the fourth cumulant as the kurtosis (the distribution flattening)
by normalizing this fourth cumulant by the squared variance:

K, (%
= =773
Y2 PR

X X

2

)=o,
’)

~ XN N

[l

~e s S
[

=

W
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4.3 Coupled random variables

3.a Coupled random variables and independence

This section introduces the concept of n random real variables x;, ... X, ,
defined on n real intervals V', ... V', . They are coupled by the probability
distribution to » variables, P(xl,...,xn) , defined on (Vl,...,Vn) to R",
integrable and verifying :

fVl ...IV"P(xl, ...,xn)dx1 Ldx, =1

The marginal distribution for each variable P, is the probability distribution

specific to each variable, knowing nothing about the value of the other variables. It is
deduced from the global distribution by integration over all the other variables :

P, (xl):sz an P(x,,...,x,)dx,..dx,
Pz(xz):fV1 fV3 an P(x,,....x,)dx, dx;...dx,

Independence
The variables from x, to x, areindependentif:

n

V(xlj...,xn)E(Vl,...,Vn) P(xl’._.,xn): m:1pm<xm)

Conditional probability
For simplicity, we limit ourselves to 2 variables. The concept easily generalizes to
n variables.

The conditional probability, P(xllxz) , is the probability of X, knowing the value
of the second, x, .its value is:
( | )_P(xl,xz)
1 X2 — 5 .\
Pz(xz)

Conditional probability is verifies :
J‘Vl P(x,|x,)dx,=1
The variables x;, and X, are independent if and only if:
Y (x,,x,)€(V,,V,) P(x]|x,)=P,(x,)
3.b Characteristic function, moments and cumulants

Moments
It is possible to define cross moments between variables:

XY= f f x"xP(x,, ..., x,)dx,...dx,

The Cauchy-SChwarz |nequal|ty implies that for any pair of random variables (if the
order 2 moments exist):

<x1x2>23<x?><x§>
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The notion of characteristic function can be generalized :
Gk, .., kn):fV1 mfynezklx1+...+ zk,,an<x1} X, )dx, . dx,

If the variables are independent, the characteristic function of the sum of
independent variables is the product of the characteristic functions of each variable:

X,..X,independent = G, ., (k.. .k,)= nm:lGXm<km)

Cumulants

The cumulants can also be generalized to the multidimensional case, by
developing in series the logarithm of the characteristic function on all the variables.

Order m cumulants form a matrix of size " .

The first cumulants are numbered n : these are the mean values along each
direction:

M =(X,)
The second cumulants form a matrix of size n2 , the covariance matrix. Its
elements are :
Oml:<xmxl>_<xm><xl>
This matrix is symmetric.

The diagonal terms are the variances specific to each variable. The off-diagonal
terms are the co-variances.

If the covariance of 2 variables is zero, these variables are said to be uncorrelated.
Independent variables are always uncorrelated. But the converse is not true: the
condition of independence of the variables is much more restrictive than the notion of
correlation of their values.

We introduce the notion of correlation coefficient :

O
pml_

ml

Gm Cyl

Due to the Cauchy-Schwarz inequality:

Multivariate Gaussian probability law
The Gaussian form of the probability law can be generalized to n dimensions. Lth

vector )_c:(xl,...,xn) gathers all the random variables. The Gaussian form is
determined by the vector of means ,Zt=(,u1,...,,un) and by the covariance matrix,
> , definite positive :
P()_c): 1 —(x—p).27"(z—m)/2

e
(ZR)nlzdet(Z)l/z

The generating function of the multidimensional Gaussian law is written for the
vector k=(k,,....k,) -

G(l—c):eik.ﬁ—l}.z.%/z
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