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Physics and Diagnostics in Tokamak plasmas
How to measure 

- electron and ion 
- density, velocity and temperature 
- in the plasma core ?
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Lecture
 I. Thomson Scattering

 Thomson Scattering principle
 Incoherent Thomson Scattering

 ITS and electron dynamics
 Relativistic particle case
 Magnetic field effect
 ITS applications (T3, JET, ITER)

 Coherent Thomson Scattering
 CTS and ion and electron dynamics
 CTS applications (TEXTOR, ASDEX-U, ITER)
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Thomson Scattering principle
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Thomson Scattering principle
Scattering is different from interferometry :
instead of detecting the phase shift of the initial beam through the plasma,
we look at the light remitted in every other direction by the the plasma.  

laser
i

 i

Rotating
grid

det.

laser
i

det.

Interferometry

Thomson 
Scattering

Scattered light intensity will give information on the electron density.
Doppler effect will give information on particle velocity distributions.



     C. Honoré –  Tokamak Physics and Diagnostics - Thomson Scattering - 12/19/25 6

Thomson Scattering : free electron scatterer

r⃗ j(t )
The incident wave electric field accelerates mainly plasma free electrons 
          : single electron position

The electron position oscillates at the incident wave frequency      :

Each single electron oscillation creates a local oscillating dipole :

p j

r j

E
i
r , t =e

i  k
i
.r−

i
t  E

i 0

k⃗ i ,λ i ,ωi

E
i 0 k

i

Mono-chromatic transverse linear mono-mode wave  :

me a⃗ j (t)=−qe E⃗ i( r⃗ j (t ) , t)

r⃗ j(t )=
qe

meωi
2 E⃗ i (r⃗ j (t ) , t )

Simple model : free electrons are the scatterers
         the scatterers are non relativistic, no magnetic field

p⃗ j (t )=−qe d⃗ [ r⃗ j (t) , t ]=
−qe

2

meωi
2 E⃗ i (r⃗ j (t ) , t )

ωi≫ωp

qe>0
ωi
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Thomson Scattering : electric field scattered by a dipole

The scattered field (     ,       ) is the Maxwell-Ampere and Maxwell-Faraday 
equation solutions with a dipole as the source :

E
s j

H
s j

∇⃗∧H⃗ s j ( r⃗ ' , t )=∂t (ε0 E⃗ s j ( r⃗ ' , t )+ p⃗ j (t)δ( r⃗ '−r⃗ j ))

∇⃗∧ E⃗ s j ( r⃗ ' , t )=−μ0∂t H⃗ s j ( r⃗ ' , t )

The wave solution is a Green function corresponding to a spherical wave :

k⃗ sj=k i e⃗sjr '

E ir , t =ei 
k i .r−i t  E i0

−∇⃗∧(∇⃗∧ E⃗ s j( r⃗ ' , t))+
ωi

2

C2 E⃗ s j( r⃗ ' , t)=−μ0 p⃗ j(t )δ( r⃗ '−r⃗ j)

E⃗ s j ( r⃗ ' , t )=
μ0q e

2

4 πme

ei ki|⃗r '−r⃗ j|

|⃗r '−r⃗ j|
ei( k⃗ i . r⃗ j−ωi t ) e⃗sj∧( e⃗sj∧E⃗ i 0)

e⃗sj
r⃗ '

E
i 0 k

i

Thomson scattering is elastic (no energy absorption nor emission) : |k⃗ sj|=|k⃗ i|

Both equation combined in a wave equation with a punctual source :

∂t=
∂
∂ t

r j

E⃗ ' 0
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Thomson Scattering : far field scattered electric field

r j

r '

E⃗ s j ( r⃗ ' , t)=
μ0 qe

2

4πme

ei k⃗s . r⃗ '

r ' e−iωi t e⃗s∧( e⃗s∧E⃗ i 0) e
−i (k⃗ s−k⃗ i ). r⃗ j (t )

Single free electron scattered field :

E ir , t =ei 
k i .r−i t  E i0

r⃗ '
E
i 0 k

i

|⃗r '|≫λ i        : observation distance is much larger than the incident wave wavelength.

|⃗r '|≫|r⃗ j|        : observation distance is much larger than scattering volume      dimension.
                is defined by crossing of incident beam and detector antenna beam.

e⃗sj∼e⃗s→ One common observation direction : 

ek i|⃗r '−r⃗ j|∼ek i e⃗s .( r⃗ '−r⃗ j)=e k⃗ s . r⃗ ' e−k⃗ s . r⃗ j→ Spherical locally considered as plane wave : 

Far field approximation :

e⃗s

k⃗ s=k i e⃗s

V s

V s

1
|⃗r '−r⃗ j|

∼ 1
r '

E⃗ s j( r⃗ ' , t)=
μ0qe

2

4 πme

ei k i|⃗r '−r⃗ j|

|⃗r '−r⃗ j|
ei (k⃗ i . r⃗ j−ωi t) e⃗sj∧(e⃗sj∧E⃗ i 0)

V s

λi

E⃗ ' 0

0⃗

k⃗ s=k i e⃗s
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Thomson Scattering : scattered electric field factors

r '

E⃗ ' 0

E⃗ s j( r⃗ ' , t)=
μ0qe

2

4 πme

e
i k⃗ s . r⃗ '

r ' e
−iωi t e⃗s∧(e⃗s∧E⃗ i 0) e

−i (k⃗ s−k⃗i) . r⃗ j (t) k
k s

k i



μ0qe
2

4 π me
=r 0=2 ,8 10−15m : electron classical radius

k⃗=k⃗ s− k⃗ i
Scattering wave vector (Bragg's condition)

Single free electron scattered field with far field approximation :

ei k⃗ s . r⃗ '

r ' : wave spherical structure

E⃗ '0=e⃗s∧( e⃗s∧E⃗ i 0) : wave polarization modification

e−i (k⃗ s−k⃗ i ). r⃗ j (t )=e−i k⃗ . r⃗ j (t )
: the electron specific phase function of the scattering wave vector

E ir , t =ei 
k i .r−i t  E i0

r⃗ '
E
i 0 k

i θ

k=2 k i sin (θ/2 )

e−iωi t
: source frequency phase

e⃗s

k⃗ s=k i e⃗s

r j0⃗

V s

θ
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Thomson Scattering vs Rayleigh Scattering

r '

k
k s

k i



r 0

Rayleigh scattering : Gas neutral molecules are the scatterers. Bound electrons reacts 
to the initial wave. Neutral molecules get polarized :

       : molecule polarizability : 
Far field approximation of the Rayleigh scattered electric field :

    the electron classical radius is replaced with the averaged Rayleigh radius :
            : medium refraction index

The Rayleigh radius depends on initial wave wavelength : it is larger for smaller wavelength.
The Rayleigh radius is smaller than        for wavelength larger than UV wavelengths. 
Rayleigh (and Raman) scattering might be used to calibrate Thomson scattering diagnostic.

E ir , t =ei 
k i .r−i t  E i0

r⃗ '

p⃗ j(t)=α j ε0 E⃗ i(r⃗ j (t ) , t)
α j αair=4π 1.65 10−30m3

E⃗ s j ( r⃗ ' , t )= π
nW
2 λ i

2
ei k⃗ s . r⃗ '

r ' e−i ωi t e⃗s∧( e⃗s∧E⃗ i 0) α j e
−i k⃗ . r⃗ j

rR=
π ⟨α⟩
nW
2 λi

2

r 0

E
i 0 k

i

e⃗s

k⃗ s=k i e⃗s

nW
rRair∼r0 λ i∼0.15 µm

r j0⃗

V s

E⃗ ' 0
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Thomson scattering anisotropy

Far field single electron scattered field :

The emission is not isotropic. It depends on the angle between the wave polarization and the 
observation direction :

When the wave polarization is in the scattering plane, this angle is the scattering angle: 

When the wave polarization is perpendicular to the scattering plane, this angle is null:

The scattered electric field is reduced when       angle goes to 90°.

E⃗ s j ( r⃗ ' , t)=r0
ei k⃗ s . r⃗ '

r ' e−iωi t e⃗s∧( e⃗s∧E⃗ i 0) e−i k⃗ . r⃗ j (t )

r⃗ '
k⃗k⃗ s

θ

E⃗ i( r⃗ , t)=ei(k⃗ i . r⃗−ωi t) E⃗ i 0
r⃗ '

E⃗ i 0 k⃗ i

θpol=π/2−(̂e⃗s , E⃗ i 0)

θ

θpol=θ

θ pol=0

E ' i 0=|e⃗s∧( e⃗s∧E⃗ i 0)|=E i 0 cosθpol

e⃗s

k⃗ s=k i e⃗s

E ' i 0=E i 0 cosθ

E ' i 0=E i 0

r⃗ j0⃗

V s

E⃗ ' 0

r '

r⃗ '
E⃗ i 0 k⃗ i θ

k⃗ s

r⃗ j

E⃗ ' 0

r '

r⃗ '
E⃗ i 0 k⃗ i θ

k⃗ s

r⃗ j

E⃗ ' 0

θ pol

e⃗s

e⃗s
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Thomson scattering cross section per electron
Far field single electron scattered field :

The scattered electric field amplitude :

For each solid angle scattered direction            , the 
electromagnetic scattered intensity compared 
to the  initial wave intensity :

So : 

Averaged for both possible initial polarizations :

Integrated for all solid angles :

The Thomson scattering cross section 
for a single electron :

d σ j

dΩs
(θ ,φ)=

1
I i
d I sj(θ ,φ)

dΩs
=

r ' 2 I sj
I i

=
r ' 2 ⟨|E sj

2|⟩
⟨|E i 0

2|⟩

|E⃗ s j( r⃗ ' , t)|=r 0
1
r ' E i 0 cosθ pol

E⃗ s j( r⃗ ' , t)=r 0
e
i k⃗ s . r⃗ '

r ' e
−iωi t e⃗s∧(e⃗s∧E⃗ i 0) e

−i k⃗ . r⃗ j (t)

(θ ,φ)

dσ j

dΩs
(θ ,φ)=r 0

2 1+cos2θ
2

σTj=∫−π /2
π /2 d θ∫0

2 π d σ j

dΩs
(θ ,φ)sin θ d φ

σTj=
8π
3 r 0

2

d σ j

d Ωs
(θ ,φ)=r 0

2 cos2θpol

θ

Polarization
direction

r 0= μ0qe
2

4 π me
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Incoherent Thomson Scattering
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Thomson Scattering : scatterer sum

E i 0

k i

r '

k
k s

k i



E⃗ s ( r⃗ ' , t )=∑ j=1

N s

E⃗ s j ( r⃗ ' , t )

n k⃗ (t)=∑ j=1

N s

e−i k⃗ . r⃗ j(t )

Each scatterer scattered electric field differs by the scattering phase.
The scattering signal will be defined by the sum of the scattering phases : 

E ir , t =ei 
k i .r−i t  E i0

Scattered electric field sum upon                 free electron scatterers :

r⃗ '

E⃗ s( r⃗ ' , t)=r 0
ei k⃗ s . r⃗ '

r ' e⃗s∧(e⃗s∧E⃗ i 0)e
−iωi t∑ j=1

N s e−i k⃗ . r⃗ j(t)

N s=neV s

e⃗s

k⃗ s=k i e⃗s

r j

V s

E⃗ ' 0

E⃗ s j ( r⃗ ' , t)=r0
ei k⃗ s . r⃗ '

r ' e−iωi t e⃗s∧( e⃗s∧E⃗ i 0) e−i k⃗ . r⃗ j (t )



     C. Honoré – Tokamak Physics and Diagnostics – Thomson Scattering - 12/19/25 15

Incoherent Thomson Scattering : signal correlation

Scattering signal time auto-correlation : 

C k⃗ (τ)=⟨n k⃗ (r⃗ ' , t)n k⃗
∗(r⃗ ' , t+ τ)⟩t=⟨∑ j=1

Ns ∑l=1
Ns e

−i (k⃗ . r⃗ j (t)− k⃗ . r⃗ l (t+ τ))⟩t

C k⃗ ( τ)=⟨∑ j=1

N s

e−i (k⃗ . r⃗ j(t )−k⃗ . r⃗ j (t+τ))⟩t+⟨∑ j≠l

N s(N s−1)
e−i ( k⃗ . r⃗ j(t )−k⃗ . r⃗ l (t+ τ))⟩t

When incident wave wavelength is much shorter than the Debye length,

 
even the collective effects due to ion shielding by electron will not affect scattering phase 
coherence between electrons for such a small wavelength.

For a small scattering wavelength, the cross-correlations terms are negligible :

For 

This is finite power signal.

k λD>1

n k⃗ (t )=∑ j=1

N s

e−i k⃗ . r⃗ j (t )

τ=0

⟨|n k⃗ (t )|2⟩t=C k⃗ (0)=⟨∑ j
N s ei 0⟩t=N s



     C. Honoré – Tokamak Physics and Diagnostics – Thomson Scattering - 12/19/25 16

C k⃗ ( τ)=⟨∑ j=1

N s

e−i (k⃗ . r⃗ j(t )−k⃗ . r⃗ j (t+τ))⟩t

We assume that for     delays shorter than           correlation time, electron has 
constant  velocity trajectory :

The velocity still varies at larger time scales.

C k⃗ ( τ)τ
r⃗ j(t)−r⃗ j (t+τ)= v⃗ j(t) τ

C k⃗ ( τ)=⟨∑ j=1

N s

ei k⃗ . v⃗ j(t ) τ⟩t

Using ergodic hypothesis, we introduce electron velocity distribution :

C k⃗ ( τ)=N s∭ d v⃗ f e v⃗ ( v⃗)e
i k⃗ . v⃗ τ

n k⃗ (t )=∑ j

N s

e− i k⃗ . r⃗ j(t )

f e v⃗

Scattering signal time correlation only includes electron self scattering : 

Incoherent Thomson Scattering : correlation and velocity

The velocity component along     only plays a role :

: probability distribution for electron velocity component alongf e vk

k

k⃗

k⃗ vk= v⃗ . e⃗k

C k⃗ ( τ)=N s∫d vk f evk
(vk )e

i k vk τ

e⃗k=
1
k k⃗

k⃗
θ

k⃗ s

k⃗ i



     C. Honoré – Tokamak Physics and Diagnostics – Thomson Scattering - 12/19/25 17

n k⃗ (t)=∑ j
N s e−i k⃗ . r⃗ j (t)

The frequency auto-spectrum for a finite power signal :

N k⃗ (ω)=∫ d τC k⃗ (τ)eiω τ

N k⃗ (ω)=N s
2 π
k f e vk (−ω

k )
The Thomson scattering signal spectrum reproduces
              the 1D electron velocity distribution along     .
Knowing the normalization, it is proportional to the plasma density.

Incoherent Thomson Scattering and velocity distribution

N k⃗ (ω)=N s
2 π
k ∫ d vk f e vk

(vk)δ (
ω
k +vk)

N k⃗ (ω)=N s∫d τ∫d vk f evk
(vk )e

i (ω+k vk) τ

Integration variable substitution :  

C k⃗ ( τ)=N s∫d vk f evk
(vk )e

i k vk τ

k τ→1/u

N k⃗ (ω)= lim
T→+∞

1
T |n k⃗ T (ω)|2

n k⃗ T (ω)=∫t

t+T
dt n k⃗ (t )e

iω t

The frequency auto-spectrum is the time Fourier transform of the auto-correlation :

k⃗
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Scalar Form Factor for Incoherent Scattering : 

S k⃗ (ω)=
2 π
k f e vk(

−ω
k )

Incoherent Thomson Scattering : form factor

⟨|n k⃗ (t )|
2⟩

t
=N s

S k⃗=
1
N s

⟨|n k⃗ (t )|
2⟩t=1

Dynamical Form Factor for Incoherent Scattering : 

∫S k⃗ (ω)dω=1 ∫ f evk
(vk )dvk=1

S k⃗ (ω)=
1
N s

N k⃗(ω)

Dynamical Form Factor for Incoherent Scattering is normalized : 

n k⃗ (t)=∑ j
N s e−i k⃗ . r⃗ j (t)



     C. Honoré – Tokamak Physics and Diagnostics – Thomson Scattering - 12/19/25 19

Incoherent Thomson Scattering : scattered power
The scattered power for a scattering volume      is the sum of the averaged scattered 
power for one electron multiplied by the electron number in the volume :

The plasma scattered power per unit volume integrated for all directions :

Scattered light cross section frequency spectrum

σT=
8π
3 r 0

2N s

dσ
d Ωs

(θ ,φ)=
r '2 I s
I i

=
r '2 ⟨|∑ j=1

N s

E sj

2|⟩
⟨|E i 0

2|⟩
=

r '2∑ j=1

N s

⟨|E sj
2|⟩

⟨|E i0
2|⟩

N s=neV s

V s

d σ
dΩs

(θ ,φ)=N s r 0
2 cos2θ pol

dσ
d Ωs

(θ ,φ ,ω)=N sr 0
2 cos2θpol

2 π
k f ev k

(−ω
k )

Scattering cross section per solid angle

r ' 2 ⟨|E sj
2|⟩

⟨|E i 0
2|⟩

=r 0
2 cos2θ pol
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When the velocity distribution is Maxwellian, 

we can deduce the electron temperature from the Gaussian width.

We can also measure the electron density :

Incoherent Thomson Scattering : Maxwellian distribution

f vk e 0(vk)=
1

vTe√2 π
e

−vk
2

2 vTe
2 vTe=√ kBT e

me

S k⃗ (ω)=√2 π
k vTe

e
−ω2

2 k2 vTe
2

dσ
d Ωs

(θ ,φ)=neV s r 0
2 cos2θpol

Δω
e−1/2=k vTe

k vTe

2 π

vTe

vk=λ(ν−νi)

nωi k⃗
(t )=e−iωi t∑ j=1

N s

e−i k⃗ . r⃗ j(t )

νi=ωi /2 π

nωi k⃗ T
(ω)=n k⃗ T (ω−ωi)
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For electron with kinetic energy larger than          , relativistic effects have to be taken 
into account.

Classical electron acceleration by the incident electric field :

Relativistic electron acceleration :

Thomson Scattering : relativistic acceleration

β⃗ j(t)=
1
C v⃗ j(t)

d t β⃗ j=
−qe

meC E⃗ i(r⃗ j(t) , t)

d t β⃗ j=
−qe

me γ jC [ E⃗ i−(β⃗ j . E⃗ i)β⃗ j+(β⃗ j . E⃗ i) e⃗i−(β⃗ j . e⃗i) E⃗ i ]

r '
E ir , t =ei 

k i .r−i t  E i0
r⃗ '

E
i 0 k

i θe⃗i
e⃗s

k⃗ s=k i e⃗s

γ j=
1

√1−β j
2

r j

E⃗ ' 0

1 keV
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Scattered electric as a function particle velocity

Electron scattered field classical expression :

Electron scattered field relativistic expression :

Thomson Scattering : relativistic scattered electric field

r '
E ir , t =ei 

k i .r−i t  E i0
r⃗ '

E
i 0 k

i θe⃗i
e⃗s

k⃗ s=k i e⃗s

E⃗ s j( r⃗ ' , t)=
μ0C qe

4 π
ei k i|⃗r '−r⃗ j|

|⃗r '−r⃗ j|
e⃗sj∧(e⃗sj∧d t β⃗ j)

E⃗ s rel j( r⃗ ' , t)=
μ0 qe

2

4 πme

ei k i|⃗r '− r⃗ j|

|⃗r '−r⃗ j|
ei ( k⃗ i . r⃗ j−ωi t) 1

(1−e⃗sj .β⃗ j)
3 e⃗sj∧[( e⃗sj−β⃗ j)∧E⃗ i 0 ]

⃗E s clas j( r⃗ ' , t)=
μ0qe

2

4 πme

ei k i|⃗r '−r⃗ j|

|⃗r '−r⃗ j|
ei (k⃗ i . r⃗ j−ωi t) e⃗sj∧(e⃗sj∧E⃗ i 0)

β⃗ j (t)=
1
C v⃗ j (t)

r j

E⃗ ' 0
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Classical scattered cross section power spectrum :

For the relativistic case, the scattering signal frequency spectrum is not proportional 
to the velocity distribution (1st order development in     ):

k

Incoherent Thomson Scattering : relativistic scattered power

dσ
d Ωs

(θ ,φ ,ω)=N sr 0
2 cos2θpol

2 π
k f ev k

(−ω
k )

d σrel

dΩs
(θ ,φ ,ω)=N s r 0

2 1
√2(1−cosθpol )

(1+ 3ω
2ωi

)
2 π
k i

f e vk
(−ω

k )

Classical limit

Relativistic case : 
enhanced power in the forward direction

Relativistic 
spectrum 
is blue shifted 

β
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When                plasma polarization due to the incident wave is not modified by the 
presence of the magnetic field.
In the presence of the magnetic field, charged particles have cyclotron trajectories.
Charged particle do not have rectilinear trajectories. 
But in the case incident wave frequency is much larger than the electron cyclotron 
frequency,               , we will consider that the scattering signal correlation time is much 
shorter than the electron cyclotron time                   .
The electron then rotates a small angle along the cyclotron circle.
This movement is almost a rectilinear movement.
The angle position along the cyclotron circle is random.

The scattering signal spectrum will then reproduce the 
velocity distribution.

Thomson Scattering : magnetized plasma

ωi≫ωce
T C k⃗

ωce≪1

S k⃗ (ω)=
2 π
k f e vk(

−ω
k )

ωi≫ωce
ωi≫ωce

C k⃗ ( τ)=⟨∑ j

N s

ei k⃗ . v⃗ j (t ) τ⟩t

v⃗ j (t )
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Scattering signal correlation expression for a magnetized plasma 

The phase for each electron is written : 

We use 1st type Bessel functions to develop sinus function inside the phase :

The electron correlation phase is written :

Thomson Scattering : magnetized plasma

S k⃗ (ω)= 2π
k ∑

n=−∞

+∞

∭ d3 v⃗ J n ( k⊥ v⊥
ωce )δ(ω+k∥v∥+nωce) f e v⃗( v⃗ )

k⃗ . r⃗ j(t+τ)−k⃗ . r⃗ j(t)=
k ⊥ u j⊥

ωce

sin (ωce τ)+k∥v j∥ τ

ei z sin θ= ∑
n=−∞

∞

J n( z)ei nθ

e
i [ k ⊥ u j⊥

ωc α

sin (ωc α τ)]
= ∑

n=−∞

∞
J n(k ⊥ u j⊥

ωc α
)e

i n ωc α τ

C k⃗ ( τ)=⟨∑ j=1

N s

e−i (k⃗ . r⃗ j(t )−k⃗ . r⃗ j (t+τ))⟩t

C k⃗ ( τ)=⟨∑
j=1

N s

ei k∥v j∥ τ ∑
n=−∞

+∞

J n ( k ⊥ u j⊥
ωce )ei nωce τ⟩

t

v j∥= v⃗ . e⃗ B

⃗v j ⊥= v⃗−v j∥ e⃗B

ωi∼ωce

P Carolan & D Evans,
Int. Conf. Ph. Ion. Gases (1971)

k⃗ ⊥= k⃗−k∥ e⃗B

k∥=k⃗ . e⃗ B
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Incoherent Thomson Scattering on T3 Tokamak

For first Tokamaks (T1, T3), plasma electron temperature was evaluated using the
magnetic measurements and using models connecting the plasma conductivity to 
the plasma collisionality, and then the electron temperature.

Arstimovich et al., Plasma Physics, 7 (1965), p 305
Peacock et al., Nature, 224, (1/11/1969), p 488

In order to check this evaluation, a British
group made Thomson scattering
measurements on the Tokamak Plasma.

Ruby laser : λ i=0.6943μ m



     C. Honoré – Tokamak Physics and Diagnostics – Thomson Scattering - 12/19/25 27

T3 Tokamak electron density and temperature profiles 

Scattered power was measured for 10 different frequency 
shift.

Data are fitted with Maxwellian in order to estimate the 
temperature.

Measurements were done at different positions in order to get the 
electron temperature profile.νi λ i=C=(νi+Δ νi)(λ i+Δ λ i)

Δ ν=v e/ λΔ νi=(−νi / λ i)Δλ i
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LIDAR Incoherent TS on JET
LIght Detection And Ranging : short time laser pulse back-scattering 
measurements. Same measurement principle as radars : 
localization is function of the time of flight. 
The LIDAR only needs one access port to the device. 
Spatial resolution is proportional to the Laser pulse short duration : 
we need a more sensitive detector.
A Thomson scattering LIDAR is present on JET :
Pulsed Ruby Laser (694 nm, 2 J, 220 ps, 0,5 Hz)
Polychromator with 6 spectral channels
MCP Photomultiplier

Salzmann et al., Nuclear Fusion, 27, p 1925 (1987)

Spatial resolution : 
     15 cm
Temperature 
resolution  :
     ± 5 to 20%
Temperature 
range :
     0.5 to 20 keV
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ITER incoherent Thomson Scattering

Bassan et al., J. Instr., 11, C01052 (2016)

3 Thomson Scattering systems around ITER

Edge Thomson Scattering system

Divertor Thomson Scattering systemCore Plasma Thomson Scattering system
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ITER incoherent Thomson Scattering

Simulated Thomson scattering cross-section 
depending on the scattering direction and 
electron temperature.
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ITER incoherent Thomson Scattering

Scannell et al., J. Instr., 12, C11010 (2017)

Electron density and temperature 
measurement accuracy depends on their 
value in the plasma
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Coherent Thomson Scattering
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n k⃗ (t)=∑ j

N s

e−i k⃗ . r⃗ j (t )

Coherent Thomson Scattering
The Scattering Signal is the sum of all scatterer scattering phases :

The sum can be replaced with the Klimontovich description of the density : 

nKl ( r⃗ , t )=∑ j
δ( r⃗−r⃗ j(t))

n k⃗ (t)=∭Vs nKl( r⃗ , t)e
−i k⃗ . r⃗ d3 r⃗

When the scattering wavelength                is large enough,
we switch from the microscopic description to a mesoscopic description : 

λ=2 π/ k

nKl ( r⃗ t )→n e( r⃗ t )

n k⃗ (t)=∭Vs ne( r⃗ , t)e
−i k⃗ . r⃗ d3 r⃗

For a mesoscopic point of view, the scattering signal is the spatial Fourier transform 
of the electron density :

k λD<1 λ>2 π λD
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Because of the electron mass, plasma electrons are the main scatterer particles for 
Thomson scattering.

But for scattering wavelength larger than the Debye length (               ), 
the electron dynamics are affected by ion dynamics due to the screening by electrons.

Electron density fluctuations are linked also to ion density fluctuations.

The plasma will be considered as a dielectric medium.

k λD<1

Coherent Thomson Scattering
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Expression of the electric displacement for a dielectric medium : 
the electric field is modified by the presence of dipoles :

The dipole field is function of the plasma susceptibility :

The plasma response is the sum of the electron and the ion response :

The medium electron charge due to the electric displacement :

We have to determine      in order to know the electron density fluctuations used
for scattering signal :  

Plasma susceptibility

D⃗=εr ε0 E⃗=ε0 E⃗+ P⃗

P⃗=χε0 E⃗

P⃗=P⃗e+ P⃗ i

ρe=−∇⃗ . P⃗e=
−χ e

1+χ e+χ i
∇⃗ . D⃗

D⃗

ne=
−1
qe

ρe

εr=1+χe+χ iD⃗=ε0(1+χ e+χ i) E⃗

P⃗e=χeε0 E⃗ P⃗ i=χ i ε0 E⃗
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For any free test particle with charge       and velocity       ,
The charge dynamics is :

The Fourier transform of this moving charge is :

This test particle generates an electric displacement field :

So the test particle modifies the electron charge distribution through the screening effect :

The electron charge distribution, will be the sum of the electron distribution, 
the electron shielding electron distribution and the electron shielding ion distribution
The resulting electric charge distribution is modified by all test particles :

Coherent Thomson Scattering: shielding effect
qn v⃗n

ρn( x⃗ , t)=qnδ( x⃗− v⃗n t )

ρn( k⃗ ,ω)=2π qnδ( k⃗ . v⃗n+ω)

ρn=∇⃗ . D⃗

ρe( k⃗ ,ω)=
−χ e

1+χ e+χi
2 πqn δ( k⃗ . v⃗n+ω)

ne( k⃗ ,ω)=
−1
qe

ρe( k⃗ ,ω)

ne( k⃗ ,ω)=
−1
qe

∑ j

N el [1− χe

1+χe+χ i ]2π(−qe)δ( k⃗ . v⃗ j+ω)+
−1
qe

∑l

N ion [ −χe

1+χe+χ i ]2π Z i qe δ( k⃗ . v⃗l+ω)

ρn( k⃗ ,ω)=∭ d3 r⃗∫ dtρn( r⃗ , t )e
i (ω t− k⃗ . r⃗ )

Z i

Gauss law for free test particle

~ρe( k⃗ ,ω)=∑n

N part −χ e

1+χ e+χi
2 πqn δ( k⃗ . v⃗n+ω)

ρe=
−χ e

1+χ e+χi
∇⃗ . D⃗

: ion charge number
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Electron distribution corrected by the shielding effect :

Dynamical form factor :

For each species    ,         is the velocity distribution  :

         is the 1D velocity distribution along

The form factor expression : 

Coherent Thomson Scattering: the form factor

S k⃗ (ω)= lim
T→+∞

1
T N s

|neT (k⃗ ,ω)|2

S k⃗ (ω)= 2π
N s ⟨∑ j

N el [1− χe

1+χe+χ i ]
2

δ( k⃗ . v⃗ j+ω)+∑l

N ion [ −χe

1+χe+χi ]
2

Z l
2 δ( k⃗ . v⃗l+ω)⟩T

⟨∑ j

N ι

δ( k⃗ . v⃗ j+ω)⟩T=∭V s
d 3 r⃗∭ d 2 v⃗ F v⃗ ι( v⃗ )δ( k⃗ . v⃗+ω)

⟨∑ j

N ι

δ( k⃗ . v⃗ j+ω)⟩T=V s∫dvk f vk ι(v k)δ(k v k+ω)

F v⃗ ι

f v k ι k⃗

⟨∑ j

N ι

δ( k⃗ . v⃗ j+ω)⟩T=V s
1
k f vk ι (

−ω
k )

S k⃗ (ω)= 2π
k [|1− χe

1+χe+χ i|
2

f vk e(
−ω
k )+| −χe

1+χe+χi|
2

Z i
2 f vk i(

−ω
k )]

ι

ne( k⃗ ,ω)=
−1
qe

∑ j

N el [1− χe

1+χe+χ i ]2π(−qe)δ( k⃗ . v⃗ j+ω)+
−1
qe

∑l

N ion [ −χe

1+χe+χ i ]2π Z i qe δ( k⃗ . v⃗l+ω)

Ergodic hypothesis

neT ( k⃗ ,ω)=∫t

t+T
dt ne( k⃗ , t )e

iω t
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The form factor expression :

The dynamical form factor does not depend only on electron velocity distribution, but also 
on each ion species velocity distribution.

When we neglect the electron screening for ions and other electrons,              and all 
we obtain the expression for incoherent Thomson scattering :

What are the values of        and      ?

For cold plasmas longitudinal waves :

These expressions apply to the incident beam characteristics 
They do not apply for waves corresponding to thermal plasma particle velocities.
We need to apply kinetic theory : the wave electric field modifies the each species velocity distribution. 

Coherent Thomson Scattering: susceptibility

S k⃗ (ω)= 2π
k [|1− χe

1+χe+χ i|
2

f vk e(
−ω
k )+| −χe

1+χe+χi|
2

Z i
2 f vk i(

−ω
k )]

S k⃗ (ω)=
2π
k f vk e(

−ω
k )

χe=0 χ i=0

χe χ i

εr=1−
ωp

2

ω2 εr=1+χ χ=−
ωp

2

ω2

k λD<1

k⃗ i ,ωi
k⃗ ,ωD=k vTe
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Using Vlasov equation :

          is the initial particle position and velocity distribution.
                    is the response to an external Fourier mode perturbation : 
The Fourier transform of the 1st order Vlasov equation is :

An electric current      is created by the       electric field  :

The current is the dipole time derivative :

Hence :

The conductivity tensor connect the electric field to the current :
We integrate the velocity distribution for the 2 directions perpendicular to   
We assume the initial distribution is isotropic (no external magnetic field). 
The species susceptibility is connected to their conductivity :

Coherent Thomson Scattering: susceptibility

∂t f ι+ v⃗ . ∇⃗ r⃗ f ι+
qι

mι
E⃗ . ∇⃗ v⃗ f ι=0

χι=− σ ι
iωϵ0

−iω f ι1+i k⃗ . v⃗ f ι 1+
qι

mι
E⃗1 . ∇⃗ v⃗ f ι 0=0

f ι1( k⃗ ,ω)
f ι0

j⃗ ι1=∭ qι v⃗ f ι1 d
3 v⃗ j⃗ ι1=

qι
2

i mι
∭ v⃗ (E⃗ 1 . ∇⃗ v⃗ f ι 0)

ω− k⃗ . v⃗
d3 v⃗

j⃗ ι1= ¯̄σι . E⃗ 1

χι ( k⃗ ,ω)=
qι
2

mι ϵ0 k∫
∂v f ι k 0

ω−k vk
d v k

E⃗ 1

E⃗ 1( k⃗ ,ω)

k⃗

f ι1=
qι

i mι

E⃗ 1. ∇⃗ v⃗ f ι 0

ω−k⃗ . v⃗

j⃗ ι1=−iωϵ0χι . E⃗1

j⃗ ι1

j⃗ ι1=∂t P⃗ι1 P⃗ι 1=ϵ0 χι . E⃗ 1 ⇒

⇒
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Susceptibility for each species :

This is a Landau damping like improper integral

For a Maxwellian distribution :

According to Fried & Comte : 

     is the plasma dispersion function :

The complex part of the dispersion function
 corresponds to the Landau Damping.

Coherent Thomson Scattering : Maxwellian distribution

χι=
qι
2

mι ϵ0 k∫
∂v f v kι 0

ω−k vk
d v k

f vk ι 0(vk)=nι0
1

√2 π ( 1
vT ι )e

−vk
2

2 vT ι
2

vT ι=√ kBT ι

mι

χι=
1

k 2 λD ι
2 w( ω

k vT ι √2
) λDι=√ ε0 k B T ι

nι qι
2 =

vT ι
ω pι

w (ξ)=1−2ξ e−ξ2

∫0

ξ
eζ2

d ζ+i √πξ e−ξ2

w

ξι= ω
k vT ι √2

w(ξ≫1)∼0

w(0 )=1
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Susceptibility for each species :

Since                  and for most cases               , electron Doppler frequencies are much larger than the ion 
Doppler frequencies :

For      in the range of electron Doppler frequencies :

Limit for the plasma dispersion relation:

Ion susceptibility is weak: 

Ion velocity distribution factor is small :

The electron term is dominant :

Coherent Thomson Scattering : Salpeter approximation

w (ξ)=1−2ξ e−ξ2

∫0

ξ
eζ2

d ζ+i √πξ e−ξ2χι=
1

k 2 λD ι
2 w(ξι)

T e∼T ime≪m i

ω∼k vTe√2
ξi= ω

k vTi√2
≫1

χ i≪1

ω

w(ξi)≪1

ξι= ω
k vT ι √2

f v k i(
−ω
k )∝e−ξi

2

≪1

k vTi≪k vTe

S k⃗ (ω)∼
2π
k | 1

1+χe|
2

f vk e(
−ω
k )
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Susceptibility for each species :

For      in the range of ion Doppler frequencies : 

For the electrons :
The dispersion function factor is close to 1:  

The electron susceptibility is almost constant:

For the ions : 

We define the Salpeter function :

The form factor includes electron and ion terms :

Coherent Thomson Scattering : Salpeter approximation

w (ξ)=1−2ξ e−ξ2

∫0

ξ
e(ζ2)d ζ+i √π ξ e− xi2χι=

1
k 2 λD ι

2 w(ξι)

ω ω∼k vTi√2

ξe≪1

ξi∼1

χe=α2

w(ξe)∼1

α= 1
k λD

S k⃗ (ω)∼√2 π
k vTe ( 1

1+α2)
2
e−ξe

2

+√2 π
k vTi Z i

2( α2

1+α2)2 e−ξi
2

|1+β2w(ξi)|2

ξι= ω
k vT ι √2

Γβ(ξ)=
e−ξ2

|1+β2w(ξ)|2 β2= 1
k2 λD

2
T e

T i

Γβ(ξ)

S k⃗ (ω)
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Coherent Thomson scattering needs the condition :
Salpeter approximation : 

The scattering dynamical form factor does not reproduce directly the velocity distribution :
the ion temperature estimation needs model fitting on measurements from multiple spectral channels. 

We need to use small angle forward scattering or long wavelength incident beam.
Small angle forward scattering : 

- difficult to separate scattered field from incident beam.
Long wavelength sources : 

- long wavelength laser
- microwave sources

Multiple ions species might be present : it is difficult to separate them :
- they have to have quite different masses (heavy impurities with High Z)
- they have to have quite different temperatures (helium as fusion product) 

Scattering signal interpretation is not obvious because of the Salpeter approximation expression.
Contrary to incoherent Thomson scattering, the scattered signal does no reproduce directly 
the velocity distribution.  

Coherent Thomson Scattering : practical application
k λD<1

ξι= ω
k vT ι √2S k⃗ (ω)=√2 π

k vTe ( 1
1+α2)

2
e−ξe

2

+√2 π
k vTi Z i

2( α2

1+α2)2 e
−ξi

2

|1+β2w(ξi)|2

α= 1
k λD

β2=
1

k 2λD
2
T e

T iω∼k vTi√2



     C. Honoré – Tokamak Physics and Diagnostics – Thomson Scattering - 12/19/25 44

Coherent Thomson Scattering on TEXTOR
Gyrotron 110 GHz, 150 kW
Pulsed source (4 ms ON, 4 ms OFF) to extract the 
signal from the ECE 
Spatial resolution : 5 to 10 cm
42 spectral channels from 107 to 113 GHz
Plasma shot with heating (Neutral Beam Injection) 
(between t = 2.1 and t = 2.2 s)

Bindslev et al., Physical Review Letters, 97, 205005 (2006)
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M. Stejner et al., Plasma Physics and Controlled Fusion, 57, 062001 (2015)

Source : cyclotrons used for ECRH, 
105 GHz, 500 kW, 2 ms ON, 8 ms OFF

CTS on ASDEX-U
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ITER Coherent Thomson Scattering

Korsholm et al., IEEE 41st Intern. Conf IRMMW-THz (2016)
Rasmussen et al., Nucl. Fusion, 59, 096031 (2019)

Source : cyclotrons  
60 GHz, 1 MW, X mode, 0.1 s resolution
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ITER Coherent Thomson Scattering : frequency spectra

Stejner et al., Nucl. Fusion, 52, 023011 (2012)

Simulated Coherent Thomson scattering spectral power
density for different scattering angle and different fuel
ion ratio.
Ion cyclotron frequencies intervene.
Contribution for each species depends on charge to 
mass ratio, thermal velocity and Larmor radius.
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ITER Coherent Thomson Scattering : fast ions

Fast ion contribution :
- Alpha particles 
- Neutral Beam Injection particles 

The spectrum is synthesized using 
ray-tracing.
3 different kinds of noise is
incorporated.

Rasmussen et al., Nucl. Fusion, 59, 096031 (2019)

Synthetic ITER CTS spectrum

Uncertainties on Bayesian
priors
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Physics and Diagnostics in Tokamak plasmas
Thomson scattering response depends on     and   

: Incoherent Thomson Scattering
The scattering signal spectrum reproduces electron velocity distribution  

                 : Coherent (or collective) Thomson Scattering
      The signal spectrum is an image of the ion velocity distribution

                : Collective Thomson Scattering
      the signal spectrum might correspond plasma instabilities

with electron density fluctuations 

Incoherent Thomson Scattering
Non perturbative measurements
Direct measurement
Spatially localized measurements with a good time resolution

k λD>1

k λD<1

k⃗ ω

ωD∼k vTi

ωD∼k c

(k , k c) 

k λD<1

S k⃗ (ω)=
2π
k f e vk(−ω/k)

S k⃗ (ω)=
2π
k [|1− χ e

1+χ e+χi|
2

f v k e(
−ω
k )+∑i| −χe

1+χe+χi|
2

Z i
2 f v k i(

−ω
k )]

n k⃗ (t )=∭Vs
ne( r⃗ , t )e

−i k⃗ . r⃗ d 3 r⃗S k⃗ (ω)=
1

T N s
|neT ( k⃗ ,ω)|2
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Physical constants
                              : Boltzmann constant
                         : Planck constant
                           : speed of light in vacuum
                             : vacuum permittivity
                            : vacuum permeability
                         : elementary charge
                           : electron mass
                                     : electron classical radius
                                : Avogadro constant
                            : atomic mass unit

● Standard parameters
                    : standard air temperature (        )
                           : standard air pressure
                          : ideal gas molecular density at      and

● Units
                                           : pressure corresponding 1 mm of mercury

kB=1,38 10−23 JK−1

h=6.62 10−34 Js
C=2,99 108ms−1

ε0=8.85 10−12Fm−1

μ0=4π 10−7Hm−1

qe=1,60 10−19C
me=9,11 10−31kg
r e=

1
4 π ϵ0

qe
2

meC
2=2.82 10−15m

N A=6,022 1023mol−1

mu=1,66 10−27kg

T 0=273.15K 0° C
P0=1,013 105Pa
n0=2,69 1025m−3 T 0 P0

1Torr= 1,013 105

760 Pa=133,3Pa
1eV= 1,6 10−19

1,38 10−23 K=1,16 104K


