Partager

Publications

Sont listées ci-dessous, par année, les publications figurant dans l'archive ouverte HAL.

2014

  • Evidence of magnetic reconnection from wave measurements at Saturn's magnetopause: Cassini RPWS observations
    • Retinò Alessandro
    • Masters A.
    • Vaivads A.
    • Khotyaintsev Y. V.
    • Fujimoto M.
    • Kasahara S.
    • Badman S. V.
    • Canu Patrick
    • Chust Thomas
    • Modolo Ronan
    • Gurnett D. A.
    • Dougherty M. K.
    , 2014, 9, pp.EPSC2014-802. Magnetic reconnection is a universal mechanism that is responsible for major energy conversion in planetary magnetospheres. Recent theoretical estimations suggest that reconnection is infrequent at Saturn's magnetopause and that it is not a major driver of the dynamics of the kronian magnetosphere. This scenario need however to be confirmed by in situ observations at the magnetopause current sheet. Evidence of reconnection in the form of accelerated plasma jets is difficult at Saturn's magnetopause due to limitations in the field of view of particle detectors. Here we show evidence of reconnection for one magnetopause event by using measurements of low frequency waves (lower-hybrid, whistlers, plasma/upper hybrid). We discuss how wave measurements can be used as evidence of reconnection in planetary magnetospheres.
  • Outflow and plasma acceleration in Titan's induced magnetotail: Evidence of magnetic tension forces
    • Romanelli N.
    • Modolo Ronan
    • Dubinin E.
    • Berthelier Jean-Jacques
    • Bertucci C.
    • Wahlund J. E.
    • Leblanc François
    • Canu Patrick
    • Edberg Niklas Jt
    • Waite H.
    • Kurth W. S.
    • Gurnett D.
    • Coates A.
    • Dougherty M.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2014, 119 (12), pp.9992–10005. Cassini plasma wave and particle observations are combined with magnetometer measurements to study Titan's induced magnetic tail. In this study, we report and analyze the plasma acceleration in Titan's induced magnetotail observed in flybys T17, T19 and T40. Radio and Plasma Wave Science (RPWS) observations show regions of cold plasma with electron densities between 0.1 and a few tens of electrons per cubic centimeter. The Cassini Plasma Spectrometer-Ion Mass Spectrometer (CAPS-IMS) measurements suggest that ionospheric plasma in this region is composed of ions with masses ranging from 15 to 17 amu and from 28 to 31 amu. From these measurements, we determine the bulk velocity of the plasma and the Alfvén velocity in Titan's tail region. Finally, a Walén test of such measurements suggest that the progressive acceleration of the ionospheric plasma shown by CAPS can be interpreted in terms of magnetic tension forces. (10.1002/2014JA020391)
    DOI : 10.1002/2014JA020391
  • Compact hohlraum configuration with parallel planar-wire-array x-ray sources at the 1.7-MA Zebra generator
    • Vesey R. A.
    • Kantsyrev Viktor L.
    • Chuvatin Alexandre S.
    • Rudakov Leonid I.
    • Velikovich A. L.
    • Shreshta I. K.
    • Esaulov A. A.
    • Safronova Alla S.
    • Shlyaptseva V. V.
    • Osborne Glenn C.
    • Astanovitsky A. L.
    • Weller Michael E.
    • Stafford A.
    • Schultz K. A.
    • Cooper M. C.
    • Cuneo Michael E.
    • Jones B.
    Physical Review E, American Physical Society (APS), 2014, 90 (6), pp.063101. A compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources is experimentally demonstrated in a configuration with a central target and tailored shine shields at a 1.7-MA Zebra generator. Driving in parallel two magnetically decoupled compact double-planar-wire Z pinches has demonstrated the generation of synchronized x-ray bursts that correlated well in time with x-ray emission from a central reemission target. Good agreement between simulated and measured hohlraum radiation temperature of the central target is shown. The advantages of compact hohlraum design applications for multi-MA facilities are discussed. (10.1103/PhysRevE.90.063101)
    DOI : 10.1103/PhysRevE.90.063101
  • Kinetic simulations of electric field structure within magnetic island during magnetic reconnection and their applications to the satellite observations
    • Huang S. Y.
    • Zhou M.
    • Yuan Z. G.
    • Deng X. H.
    • Sahraoui Fouad
    • Pang Y.
    • Fu S. Y.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2014, 119, pp.7402-7412. islands are considered to play a crucial role in collisionless magnetic reconnection. We use particle-in-cell simulations to investigate electric field E<SUB>z</SUB> structure in the magnetic islands (including primary and secondary islands) with and without a guide field during magnetic reconnection. It is found that the electric field has multilayers in the primary island and a large bipolar structure in the secondary island in the absence of guide field. The electric field is provided by the Hall term (J × B)<SUB>z</SUB> (mainly), the divergence of electron pressure tensor, and the convective term (V<SUB>i</SUB> × B)<SUB>z</SUB> in the outer and the inner region of primary island, while the electric field is much smaller (~0) in the middle and the core region of primary island due to the cancelation of the three terms. The single bipolar electric field is primarily provided by the Hall term in the secondary island. In the presence of a guide field, the electric field has multiple layers in the primary island (similar to zero guide field case) and the secondary island. However, there still exists one single large sharp bipolar structure of electric field in the central region of the secondary island. The differences of electric field in the primary and secondary islands are essentially due to the variations of the current J<SUB>y</SUB>. These features can be used as the observational criteria to identify different types of magnetic islands in the magnetosphere using the data of future mission, such as the Magnetospheric Multiscale mission. (10.1002/2014JA020054)
    DOI : 10.1002/2014JA020054
  • Magnetic clouds' structure in the magnetosheath as observed by Cluster and Geotail: four case studies
    • Turc Lucile
    • Fontaine Dominique
    • Savoini Philippe
    • Kilpua E. K. J.
    Annales Geophysicae, European Geosciences Union, 2014, 32, pp.1247-1261. Magnetic clouds (MCs) are large-scale magnetic flux ropes ejected from the Sun into the interplanetary space. They play a central role in solar-terrestrial relations as they can efficiently drive magnetic activity in the near-Earth environment. Their impact on the Earth's magnetosphere is often attributed to the presence of southward magnetic fields inside the MC, as observed in the upstream solar wind. However, when they arrive in the vicinity of the Earth, MCs first encounter the bow shock, which is expected to modify their properties, including their magnetic field strength and direction. If these changes are significant, they can in turn affect the interaction of the MC with the magnetosphere. In this paper, we use data from the Cluster and Geotail spacecraft inside the magnetosheath and from the Advanced Composition Explorer (ACE) upstream of the Earth's environment to investigate the impact of the bow shock's crossing on the magnetic structure of MCs. Through four example MCs, we show that the evolution of the MC's structure from the solar wind to the magnetosheath differs largely from one event to another. The smooth rotation of the MC can either be preserved inside the magnetosheath, be modified, i.e. the magnetic field still rotates slowly but at different angles, or even disappear. The alteration of the magnetic field orientation across the bow shock can vary with time during the MC's passage and with the location inside the magnetosheath. We examine the conditions encountered at the bow shock from direct observations, when Cluster or Geotail cross it, or indirectly by applying a magnetosheath model. We obtain a good agreement between the observed and modelled magnetic field direction and shock configuration, which varies from quasi-perpendicular to quasi-parallel in our study. We find that the variations in the angle between the magnetic fields in the solar wind and in the magnetosheath are anti-correlated with the variations in the shock obliquity. When the shock is in a quasi-parallel regime, the magnetic field direction varies significantly from the solar wind to the magnetosheath. In such cases, the magnetic field reaching the magnetopause cannot be approximated by the upstream magnetic field. Therefore, it is important to take into account the conditions at the bow shock when estimating the impact of an MC with the Earth's environment because these conditions are crucial in determining the magnetosheath magnetic field, which then interacts with the magnetosphere. (10.5194/angeo-32-1247-2014)
    DOI : 10.5194/angeo-32-1247-2014
  • NO oxidation on plasma pretreated Pyrex: the case for a distribution of reactivity of adsorbed O atoms
    • Guerra V.
    • Marinov Daniil
    • Guaitella Olivier
    • Rousseau Antoine
    Journal of Physics D: Applied Physics, IOP Publishing, 2014, 47 (22), pp.224012. The formation of NO 2 molecules on a Pyrex surface, as a result of NO oxidation by adsorbed O atoms on the wall, is experimentally demonstrated and quantified. The measurements reveal that the characteristic times of heterogeneous NO 2 production and NO gas phase decay change from ?60 to ?1500 s as the gas phase concentration of NO introduced in a tube pretreated with an oxygen radiofrequency discharge increases from 10 13 to 10 15 cm ?3 . Moreover, a clear variation of the characteristic loss frequency of NO molecules when small amounts of NO are successively injected in the tube is detected, between ?7 × 10 ?2 and ?5 × 10 ?3 s ?1 . The complex surface kinetics observed is studied and interpreted with the help of a mesoscopic surface model accounting for Eley?Rideal NO oxidation and slow NO 2 adsorption, confirming the existence of adsorption sites possessing a distribution of reactivity on the surface. (10.1088/0022-3727/47/22/224012)
    DOI : 10.1088/0022-3727/47/22/224012
  • Radio-frequency capacitively coupled plasmas in hydrogen excited by tailored voltage waveforms: comparison of simulations with experiments
    • Diomede P.
    • Economou D. J.
    • Lafleur Trevor
    • Booth Jean-Paul
    • Longo S.
    Plasma Sources Science and Technology, IOP Publishing, 2014, 23 (6), pp.065049. A combined computational-experimental study was performed of a geometrically symmetric capacitively coupled plasma in hydrogen sustained by tailored voltage waveforms consisting of the sum of up to three harmonics. Predictions of a particle-in-cell with Monte Carlo collisions/fluid hybrid model were in reasonably good agreement compared to data from an array of experimental plasma diagnostics. The plasma was electrically asymmetric, with a dc self-bias developed, for all but a sinusoidal voltage waveform. Hydrogen ions (H<SUP> </SUP>,H <SUP> </SUP><SUB>2</SUB>,H <SUP> </SUP><SUB>3</SUB>) bombarding the electrodes exhibited different ion flux-distribution functions due to their different masses and collisionality in the sheath. Plasma density, ion flux and absolute value of the dc self-bias all increased with increasing the number of harmonics. The energy of ions bombarding the substrate electrode may be controlled by switching the applied voltage waveform from (positive) peaks to (negative) valleys. (10.1088/0963-0252/23/6/065049)
    DOI : 10.1088/0963-0252/23/6/065049
  • Langmuir probe analysis in electronegative plasmas
    • Bredin Jérôme
    • Chabert Pascal
    • Aanesland Ane
    Physics of Plasmas, American Institute of Physics, 2014, 21 (12), pp.123502. This paper compares two methods to analyze Langmuir probe data obtained in electronegative plasmas. The techniques are developed to allow investigations in plasmas, where the electronegativity &#945;0&#8201;=&#8201;n/ne (the ratio between the negative ion and electron densities) varies strongly. The first technique uses an analytical model to express the Langmuir probe current-voltage (I-V) characteristic and its second derivative as a function of the electron and ion densities (ne, n , n), temperatures (Te, T , T), and masses (me, m , m). The analytical curves are fitted to the experimental data by adjusting these variables and parameters. To reduce the number of fitted parameters, the ion masses are assumed constant within the source volume, and quasi-neutrality is assumed everywhere. In this theory, Maxwellian distributions are assumed for all charged species. We show that this data analysis can predict the various plasma parameters within 510%, including the ion temperatures when &#945;0&#8201;>&#8201;100. However, the method is tedious, time consuming, and requires a precise measurement of the energy distribution function. A second technique is therefore developed for easier access to the electron and ion densities, but does not give access to the ion temperatures. Here, only the measured I-V characteristic is needed. The electron density, temperature, and ion saturation current for positive ions are determined by classical probe techniques. The electronegativity &#945;0 and the ion densities are deduced via an iterative method since these variables are coupled via the modified Bohm velocity. For both techniques, a Child-Law sheath model for cylindrical probes has been developed and is presented to emphasize the importance of this model for small cylindrical Langmuir probes. (10.1063/1.4903328)
    DOI : 10.1063/1.4903328
  • Electron transport parameters in NF<SUB>3</SUB>
    • Lisovskiy V. A.
    • Yegorenkov V. D.
    • Ogloblina P.
    • Booth Jean-Paul
    • Martins S.
    • Landry K.
    • Douai D.
    • Cassagne V.
    Journal of Physics D: Applied Physics, IOP Publishing, 2014, 47 (11), pp.115203. We present electron transport parameters (the first Townsend coefficient, the dissociative attachment coefficient, the fraction of electron energy lost by collisions with NF 3 molecules, the average and characteristic electron energy, the electron mobility and the drift velocity) in NF 3 gas calculated from published elastic and inelastic electron?NF 3 collision cross-sections using the BOLSIG code. Calculations were performed for the combined RB (Rescigno 1995 Phys. Rev. E 52 [http://dx.doi.org/10.1103/PhysRevA.52.329] 329 , Boesten et al 1996 J. Phys. B: At. Mol. Opt. Phys. 29 [http://dx.doi.org/10.1088/0953-4075/29/22/022] 5475 ) momentum-transfer cross-section, as well as for the JB (Joucoski and Bettega 2002 J. Phys. B: At. Mol. Opt. Phys. 35 [http://dx.doi.org/10.1088/0953-4075/35/4/303] 783 ) momentum-transfer cross-section. In addition, we have measured the radio frequency (rf) breakdown curves for various inter-electrode gaps and rfs, and from these we have determined the electron drift velocity in NF 3 from the location of the turning point in these curves. These drift velocity values are in satisfactory agreement with those calculated by the BOLSIG code employing the JB momentum-transfer cross-section. (10.1088/0022-3727/47/11/115203)
    DOI : 10.1088/0022-3727/47/11/115203
  • A model of the magnetosheath magnetic field during magnetic clouds
    • Turc Lucile
    • Fontaine Dominique
    • Savoini Philippe
    • Kilpua E.K.J.
    Annales Geophysicae, European Geosciences Union, 2014, 32 (2), pp.157-173. Magnetic clouds (MCs) are huge interplanetary structures which originate from the Sun and have a paramount importance in driving magnetospheric storms. Before reaching the magnetosphere, MCs interact with the Earth's bow shock. This may alter their structure and therefore modify their expected geoeffectivity. We develop a simple 3-D model of the magnetosheath adapted to MCs conditions. This model is the first to describe the interaction of MCs with the bow shock and their propagation inside the magnetosheath. We find that when the MC encounters the Earth centrally and with its axis perpendicular to the Sun–Earth line, the MC's magnetic structure remains mostly unchanged from the solar wind to the magnetosheath. In this case, the entire dayside magnetosheath is located downstream of a quasi-perpendicular bow shock. When the MC is encountered far from its centre, or when its axis has a large tilt towards the ecliptic plane, the MC's structure downstream of the bow shock differs significantly from that upstream. Moreover, the MC's structure also differs from one region of the magnetosheath to another and these differences vary with time and space as the MC passes by. In these cases, the bow shock configuration is mainly quasi-parallel. Strong magnetic field asymmetries arise in the mag-netosheath; the sign of the magnetic field north–south component may change from the solar wind to some parts of the magnetosheath. We stress the importance of the B x component. We estimate the regions where the magnetosheath and magnetospheric magnetic fields are anti-parallel at the mag-netopause (i.e. favourable to reconnection). We find that the location of anti-parallel fields varies with time as the MCs move past Earth's environment, and that they may be situated near the subsolar region even for an initially northward magnetic field upstream of the bow shock. Our results point out the major role played by the bow shock configuration in modifying or keeping the structure of the MCs unchanged. Note that this model is not restricted to MCs, it can be used to describe the magnetosheath magnetic field under an arbitrary slowly varying interplanetary magnetic field. (10.5194/angeo-32-157-2014)
    DOI : 10.5194/angeo-32-157-2014
  • BV technique for investigating 1-D interfaces
    • Dorville Nicolas
    • Belmont Gérard
    • Rezeau Laurence
    • Aunai Nicolas
    • Retinò Alessandro
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2014, 119, pp.1709-1720. To investigate the internal structure of the magnetopause with spacecraft data, it is crucial to be able to determine its normal direction and to convert the measured time series into spatial profiles. We propose here a new single-spacecraft method, called the BV method, to reach these two objectives. Its name indicates that the method uses a combination of the magnetic field (B) and velocity (V) data. The method is tested on simulation and on Cluster data, and a short overview of the possible products is given. We discuss its assumptions and show that it can bring a valuable improvement with respect to previous methods. (10.1002/2013JA018926)
    DOI : 10.1002/2013JA018926
  • Les débris spatiaux : le revers de l'ère spatiale
    • Aanesland Ane
    • Grondein Pascaline
    Flash X - La revue scientifique de l'Ecole polytechnique, Ecole polytechnique, 2014 (16), pp.12.
  • Comment on "Micronewton electromagnetic thruster
    • Lafleur Trevor
    Applied Physics Letters, American Institute of Physics, 2014, 105, pp.146101. ... (10.1063/1.4897967)
    DOI : 10.1063/1.4897967
  • Numerical simulations used for a validity check on the laser induced photo-detachment diagnostic method in electronegative plasmas
    • Oudini N.
    • Taccogna F.
    • Bendib A.
    • Aanesland Ane
    Physics of Plasmas, American Institute of Physics, 2014, 21 (6), pp.063515. Laser photo-detachment is used as a method to measure or determine the negative ion density and temperature in electronegative plasmas. In essence, the method consists of producing an electropositive channel (negative ion free region) via pulsed laser photo-detachment within an electronegative plasma bulk. Electrostatic probes placed in this channel measure the change in the electron density. A second pulse might be used to track the negative ion recovery. From this, the negative ion density and temperature can be determined. We study the formation and relaxation of the electropositive channel via a two-dimensional Particle-In-Cell/Mote Carlo collision model. The simulation is mainly carried out in a Hydrogen plasma with an electronegativity of &#945;&#8201;=&#8201;1, with a parametric study for &#945; up to 20. The temporal and spatial evolution of the plasma potential and the electron densities shows the formation of a double layer (DL) confining the photo-detached electrons within the electropositive channel. This DL evolves into two fronts that move in the opposite directions inside and outside of the laser spot region. As a consequence, within the laser spot region, the background and photo-detached electron energy distribution function relaxes/thermalizes via collisionless effects such as Fermi acceleration and Landau damping. Moreover, the simulations show that collisional effects and the DL electric field strength might play a non-negligible role in the negative ion recovery within the laser spot region, leading to a two-temperature negative ion distribution. The latter result might have important effects in the determination of the negative ion density and temperature from laser photo detachment diagnostic. (10.1063/1.4886144)
    DOI : 10.1063/1.4886144
  • CLUSTER-STAFF search coil magnetometer calibration - comparisons with FGM
    • Robert Patrick
    • Cornilleau-Wehrlin Nicole
    • Piberne Rodrigue
    • de Conchy Y.
    • Lacombe C.
    • Bouzid V.
    • Grison B.
    • Alison Dominique
    • Canu Patrick
    Geoscientific Instrumentation, Methods and Data Systems, European Geosciences Union, 2014, 3, pp.153-177. The main part of the Cluster Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment consists of triaxial search coils allowing the measurements of the three magnetic components of the waves from 0.1 Hz up to 4 kHz. Two sets of data are produced, one by a module to filter and transmit the corresponding waveform up to either 10 or 180 Hz (STAFF-SC), and the second by the onboard Spectrum Analyser (STAFF-SA) to compute the elements of the spectral matrix for five components of the waves, 3 × B and 2 × E (from the EFW experiment), in the frequency range 8 Hz to 4 kHz. In order to understand the way the output signals of the search coils are calibrated, the transfer functions of the different parts of the instrument are described as well as the way to transform telemetry data into physical units across various coordinate systems from the spinning sensors to a fixed and known frame. The instrument sensitivity is discussed. Cross-calibration inside STAFF (SC and SA) is presented. Results of cross-calibration between the STAFF search coils and the Cluster Fluxgate Magnetometer (FGM) data are discussed. It is shown that these cross-calibrations lead to an agreement between both data sets at low frequency within a 2% error. By means of statistics done over 10 yr, it is shown that the functionalities and characteristics of both instruments have not changed during this period. (10.5194/gi-3-153-2014)
    DOI : 10.5194/gi-3-153-2014
  • Electron energy distributions in a magnetized inductively coupled plasma
    • Song Sang-Heon
    • Yang Yang
    • Chabert Pascal
    • Kushner M.J.
    Physics of Plasmas, American Institute of Physics, 2014, 21 (9), pp.093512. Optimizing and controlling electron energy distributions (EEDs) is a continuing goal in plasma materials processing as EEDs determine the rate coefficients for electron impact processes. There are many strategies to customize EEDs in low pressure inductively coupled plasmas (ICPs), for example, pulsing and choice of frequency, to produce the desired plasma properties. Recent experiments have shown that EEDs in low pressure ICPs can be manipulated through the use of static magnetic fields of sufficient magnitudes to magnetize the electrons and confine them to the electromagnetic skin depth. The EED is then a function of the local magnetic field as opposed to having non-local properties in the absence of the magnetic field. In this paper, EEDs in a magnetized inductively coupled plasma (mICP) sustained in Ar are discussed with results from a two-dimensional plasma hydrodynamics model. Results are compared with experimental measurements. We found that the character of the EED transitions from non-local to local with application of the static magnetic field. The reduction in cross-field mobility increases local electron heating in the skin depth and decreases the transport of these hot electrons to larger radii. The tail of the EED is therefore enhanced in the skin depth and depressed at large radii. Plasmas densities are non-monotonic with increasing pressure with the external magnetic field due to transitions between local and non-local kinetics. (10.1063/1.4896711)
    DOI : 10.1063/1.4896711
  • Radiation from mixed multi-planar wire arrays
    • Safronova Alla S.
    • Kantsyrev Viktor L.
    • Esaulov A. A.
    • Chuvatin Alexandre S.
    • Weller Michael E.
    • Shlyaptseva V. V.
    • Shrestha Ishor
    • Keim S. F.
    • Stafford A.
    • Coverdale C. A.
    • Apruzese J. P.
    • Ouart N. D.
    • Giuliani J. L.
    Physics of Plasmas, American Institute of Physics, 2014, 21 (03), pp.031205. The study of radiation from different wire materials in wire array Z-pinch plasma is a very challenging topic because it is almost impossible to separate different plasmas at the stagnation. A new approach is suggested based on planar wire array (PWA) loads to assess this problem. Multi-planar wire arrays are implemented that consist of few planes, each with the same number of wires and masses but from different wire materials, arranged in parallel rows. In particular, the experimental results obtained with triple PWAs (TPWAs) on the UNR Zebra generator are analyzed with Wire Ablation Dynamics Model, non-local thermodynamic equilibrium kinetic model, and 2D radiation magneto-hydrodynamic to illustrate this new approach. In TPWAs, two wire planes were from mid-atomic-number wire material and another plane was from alloyed Al, placed either in the middle or at the edge of the TPWA. Spatial and temporal properties of K-shell Al and L-shell Cu radiations were analyzed and compared from these two configurations of TPWAs. Advantages of the new approach are demonstrated and future work is discussed. (10.1063/1.4864335)
    DOI : 10.1063/1.4864335
  • Theory and Modeling for the Magnetospheric Multiscale Mission
    • Hesse Michael
    • Aunai Nicolas
    • Birn Joachim
    • Cassak P.
    • Denton R.~e.
    • Drake J. F.
    • Gombosi Tamas I.
    • Hoshino M.
    • Matthaeus W.
    • Sibeck David G.
    • Zenitani Seiji
    Space Science Reviews, Springer Verlag, 2014. The Magnetospheric Multiscale (MMS) mission will provide measurement capabilities, which will exceed those of earlier and even contemporary missions by orders of magnitude. MMS will, for the first time, be able to measure directly and with sufficient resolution key features of the magnetic reconnection process, down to the critical electron scales, which need to be resolved to understand how reconnection works. Owing to the complexity and extremely high spatial resolution required, no prior measurements exist, which could be employed to guide the definition of measurement requirements, and consequently set essential parameters for mission planning and execution. Insight into expected details of the reconnection process could hence only been obtained from theory and modern kinetic modeling. This situation was recognized early on by MMS leadership, which supported the formation of a fully integrated Theory and Modeling Team (TMT). The TMT participated in all aspects of mission planning, from the proposal stage to individual aspects of instrument performance characteristics. It provided and continues to provide to the mission the latest insights regarding the kinetic physics of magnetic reconnection, as well as associated particle acceleration and turbulence, assuring that, to the best of modern knowledge, the mission is prepared to resolve the inner workings of the magnetic reconnection process. The present paper provides a summary of key recent results or reconnection research by TMT members. (10.1007/s11214-014-0078-y)
    DOI : 10.1007/s11214-014-0078-y
  • Quantified energy dissipation rates in the terrestrial bow shock: 1. Analysis techniques and methodology
    • Wilson Iii L. B.
    • Sibeck David G.
    • Breneman A. W.
    • Le Contel Olivier
    • Cully C. M.
    • Turner D. L.
    • Angelopoulos V.
    • Malaspina D. M.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2014, 119 (8), pp.6455-6474. We present a detailed outline and discussion of the analysis techniques used to compare the relevance of different energy dissipation mechanisms at collisionless shock waves. We show that the low-frequency, quasi-static fields contribute less to ohmic energy dissipation, (-j·E), than their high-frequency counterparts. In fact, we found that high-frequency, large-amplitude (>100 mV/m and/or >1 nT) waves are ubiquitous in the transition region of collisionless shocks. We quantitatively show that their fields, through wave-particle interactions, cause enough energy dissipation to regulate the global structure of collisionless shocks. The purpose of this paper, part one of two, is to outline and describe in detail the background, analysis techniques, and theoretical motivation for our new results presented in the companion paper. The companion paper presents the results of our quantitative energy dissipation rate estimates and discusses the implications. Together, the two manuscripts present the first study quantifying the contribution that high-frequency waves provide, through wave-particle interactions, to the total energy dissipation budget of collisionless shock waves. (10.1002/2014JA019929)
    DOI : 10.1002/2014JA019929
  • Observational evidence of electron pitch angle scattering driven by ECH waves
    • Kurita S.
    • Miyoshi Y.
    • Cully C. M.
    • Angelopoulos V.
    • Le Contel Olivier
    • Hikishima M.
    • Misawa H.
    Geophysical Research Letters, American Geophysical Union, 2014. Using the plasma wave and electron data obtained from Time History of Events and Macroscale Interactions during Substorms, we show a signature of electron pitch angle scattering driven by Electrostatic Cyclotron Harmonic (ECH) waves in the velocity distribution function (VDF). The diffusion curve of whistler mode waves is used as a proxy to identify changes in VDFs due to wave-particle interactions. We confirm that the shape of the VDF well agrees with the diffusion curve of whistler mode waves when whistler mode chorus alone is active. On the other hand, we find that the shape of the VDF deviates from the diffusion curves at low pitch angles when ECH waves are active following the inactivation of chorus waves. The result is observational support for electron pitch angle scattering caused by ECH waves and suggests that ECH waves can contribute to generation of diffuse auroras. (10.1002/2014GL061927)
    DOI : 10.1002/2014GL061927
  • E x B shear pattern formation by radial propagation of heat flux waves
    • Kosuga Y.
    • Diamond P.H.
    • Dif-Pradalier Guilhem
    • Gürcan Özgür D.
    Physics of Plasmas, American Institute of Physics, 2014, 21 (5). A novel theory to describe the formation of E x B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E x B staircase is discussed. (C) 2014 AIP Publishing LLC. (10.1063/1.4872018)
    DOI : 10.1063/1.4872018
  • Characterization of predator-prey dynamics, using the evolution of free energy in plasma turbulence
    • Morel Pierre
    • Gürcan Özgür D.
    • Berionni Vincent
    Plasma Physics and Controlled Fusion, IOP Publishing, 2014, 56 (1), pp.015002. A simple dynamical cascade model for the evolution of free energy is considered in the context of gyrokinetic formalism. It is noted that the dynamics of free energy, that characterize plasma micro-turbulence in magnetic fusion devices, exhibit a predatorprey character. Various key features of predatorprey dynamics such as the time delay between turbulence and large-scale flow structures, or the intermittency of the dynamics are identified in the quasi-steady-state phase of the nonlinear gyrokinetic simulations. A novel prediction on the ratio of turbulence amplitudes in different parts of the wavenumber domain that follows from this simple predatorprey model is compared to a set of nonlinear simulation results and is observed to hold quite well in a large range of physical parameters. Detailed validation of the predatorprey hypothesis using nonlinear gyrokinetics provides a very important input for the effort to apprehend plasma micro-turbulence, since the predatorprey idea can be used as a very effective intuitive tool for understanding and designing efficient transport models. (10.1088/0741-3335/56/1/015002)
    DOI : 10.1088/0741-3335/56/1/015002
  • Simulation of long term variation of the F2-layer critical frequency f0F2 at the northern tropical crest of ionization at Phu Thuy, Vietnam with the thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM)
    • Pham Thi Thu Hong
    • Amory-Mazaudier Christine
    • Le Huy Minh
    Vietnam Journal of Earth Sciences, Vietnam Academy of Science and Technology (VAST), 2014 (36), pp.470-479. In this work, the long-term variations of the simulated f0F2 by the NCAR thermosphere ionosphere-electrodynamics general circulation model (TIE-GCM) at the northern tropical crest of ionization at Phu Thuy-Vietnam (geographic latitudes 21.030N and longitude: 105.950E) during the period from 1962 to 2002 are examined to evaluate the ability of this model to reproduce the major features of the f0F2 as observed. The TIE-GCM simulates the influences of migrating and non-migrating diurnal and semidiurnal tides at the lower thermosphere, and changes of geomagnetic activity on the long-term variation of the f0F2. It reproduces well the diurnal and seasonal variations. We analyze the diurnal and seasonal variations of the observed f0F2 at Phu Thuy in approximately the same solar activity condition as in 1964, 1996 for the March and September equinoxes and June and December solstices. The local time and seasonal structures of these simulated results correspond well to those that are observed in 1964. On the contrary, the TIE-GCM model does not reproduce the amplitude observed at Thuy Phu in 1996. The TIE-GCM model with the chosen inputs does not yet allow us to explain well the long-term variations observed at Phu Thuy. We also try the different numerical simulations to understand how the long-term variation of the f0F2 is formed, how it relates to the current global system and its relationship with the thermosphere wind. The simulations show that the calculated NmF2 values are lower than the observed values. We find that the modeled contributions of the migrating and non-migrating diurnal and semidiurnal tides may cause them to play a major role in reducing the amplitude of the NmF2. The contributions of the integrated hemispheric power of auroral electrons and the cross polar cap potential seem to play an important role in increasing the amplitude of the NmF2. Keywords: F2 layer; Long-term trends; Ionosphere equatorial ionization anomaly; Ionosphere (ionospheric conductivities, ionospheric currents and electric field), thermospheric tides, Electrodynamics of the ionosphere (ionospheric dynamo).
  • On the relationship between quadrupolar magnetic field and collisionless reconnection
    • Smets Roch
    • Aunai Nicolas
    • Belmont Gérard
    • Boniface C.
    • Fuchs J. C.
    Physics of Plasmas, American Institute of Physics, 2014, 21 (6), pp.062111. Using hybrid simulations, we investigate the onset of fast reconnection between two cylindrical magnetic shells initially close to each other. This initial state mimics the plasma structure in High Energy Density Plasmas induced by a laser-target interaction and the associated self-generated magnetic field. We clearly observe that the classical quadrupolar structure of the out-of-plane magnetic field appears prior to the reconnection onset. Furthermore, a parametric study reveals that, with a non-coplanar initial magnetic topology, the reconnection onset is delayed and possibly suppressed. The relation between the out-of-plane magnetic field and the out-of-plane electric field is discussed. (10.1063/1.4885097)
    DOI : 10.1063/1.4885097
  • Whistler mode waves at magnetotail dipolarization fronts
    • Viberg H.
    • Khotyaintsev Y. V.
    • Vaivads A.
    • André M.
    • Fu H.S.
    • Cornilleau-Wehrlin Nicole
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2014, 119, pp.2605-2611. We report the statistics of whistler mode waves observed in relation to dipolarization fronts (DFs) in Earth's magnetotail using data from the four Cluster spacecraft spanning a period of 9 years, 20012009. We show that whistler mode waves are common in a vicinity of DFs: between 30 and 60% of all DFs are associated with whistlers. Whistlers are about 7 times more likely to be observed near a DF than at any random location in the magnetotail. Therefore, whistlers are a characteristic signature of DFs. We find that whistlers are most often detected in the flux pileup region (FPR) following the DF, close to the center of the current sheet (Bx&#8201;&#8764;&#8201;0) and in association with anisotropic electron distributions (Tperp>T&#8741;). This suggests that we typically observe emissions in the source region where they are generated by the anisotropic electrons produced by the betatron process inside the FPR. (10.1002/2014JA019892)
    DOI : 10.1002/2014JA019892