Partager

Publications

Sont listées ci-dessous, par année, les publications figurant dans l'archive ouverte HAL.

2017

  • Understanding of wavenumber spectra measured by Doppler reflectometry through simulation and related estimation of wave-plasma interaction regimes.
    • Happel T.
    • Görler T.
    • Hennequin Pascale
    • Lechte C.
    • Pinzón J R
    • Bernert M.
    • Conway G. D.
    • Freethy Simon
    • Honoré Cyrille
    • Stroth U.
    • Asdex Upgrade Team The
    , 2017.
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
    • Meyer H.
    • Eich T.
    • Beurskens M.
    • Coda S.
    • Hakola A.
    • Martin P.
    • Adamek J.
    • Agostini M.
    • Aguiam D.
    • Ahn J.
    • Aho-Mantila L.
    • Akers R.
    • Albanese R.
    • Aledda R.
    • Alessi E.
    • Allan S.
    • Alves D.
    • Ambrosino R.
    • Amicucci L.
    • Anand H.
    • Anastassiou G.
    • Andrèbe Y.
    • Angioni C.
    • Apruzzese G.
    • Ariola M.
    • Arnichand H.
    • Arter W.
    • Baciero A.
    • Barnes M.
    • Barrera Luis
    • Behn R.
    • Bencze A.
    • Bernardo J.
    • Bernert M.
    • Bettini P.
    • Bilková P.
    • Bin W.
    • Birkenmeier G.
    • Bizarro J. P. S.
    • Blanchard P.
    • Blanken T.
    • Bluteau M.
    • Bobkov V.
    • Bogar O.
    • Böhm P.
    • Bolzonella T.
    • Boncagni L.
    • Botrugno A.
    • Bottereau C.
    • Bouquey F.
    • Bourdelle C.
    • Brémond S.
    • Brezinsek S.
    • Brida D.
    • Brochard F.
    • Buchanan J.
    • Bufferand H.
    • Buratti P.
    • Cahyna P.
    • Calabrò G.
    • Camenen Y.
    • Caniello R.
    • Cannas B.
    • Canton A.
    • Cardinali A.
    • Carnevale D.
    • Carr M.
    • Carralero D.
    • Carvalho P.
    • Casali L.
    • Castaldo C.
    • Castejon F.
    • Castro R.
    • Causa F.
    • Cavazzana R.
    • Cavedon M.
    • Cecconello M.
    • Ceccuzzi S.
    • Cesario R.
    • Challis C. D.
    • Chapman I. T.
    • Chapman Scott C.
    • Chernyshova M.
    • Choi D.
    • Cianfarani C.
    • Ciraolo G.
    • Citrin J.
    • Clairet F.
    • Classen I.
    • Coelho R.
    • Coenen J. W.
    • Colas L.
    • Conway G.
    • Corre Y.
    • Costea S.
    • Crisanti F.
    • Cruz N.
    • Cseh G.
    • Czarnecka A.
    • d'Arcangelo O.
    • de Angeli M.
    • de Masi G.
    • de Temmerman G.
    • de Tommasi G.
    • Decker J.
    • Delogu R. S.
    • Dendy R.
    • Denner P.
    • Di Troia C.
    • Dimitrova M.
    • d'Inca R.
    • Doric V.
    • Douai D.
    • Drenik A.
    • Dudson B.
    • Dunai D.
    • Dunne M.
    • Duval B. P.
    • Easy L.
    • Elmore S.
    • Erdös B.
    • Esposito B.
    • Fable E.
    • Faitsch M.
    • Fanni A.
    • Fedorczak N.
    • Felici F.
    • Ferreira Jonathan
    • Février O.
    • Ficker O.
    • Fietz S.
    • Figini L.
    • Figueiredo A.
    • Fil A.
    • Fishpool G.
    • Fitzgerald M.
    • Fontana M.
    • Ford O.
    • Frassinetti L.
    • Fridström R.
    • Frigione D.
    • Fuchert G.
    • Fuchs C.
    • Furno Palumbo M.
    • Futatani S.
    • Gabellieri L.
    • Galazka K.
    • Galdon-Quiroga J.
    • Galeani S.
    • Gallart D.
    • Gallo A.
    • Galperti C.
    • Gao Yu
    • Garavaglia S.
    • Garcia J.
    • Garcia-Carrasco A.
    • Garcia-Lopez J.
    • Garcia-Munoz M.
    • Gardarein J.-L.
    • Garzotti L.
    • Gaspar J.
    • Gauthier E.
    • Geelen P.
    • Geiger B.
    • Ghendrih P.
    • Ghezzi F.
    • Giacomelli L.
    • Giannone L.
    • Giovannozzi E.
    • Giroud C.
    • Gleason González C.
    • Gobbin M.
    • Goodman T. P.
    • Gorini G.
    • Gospodarczyk M.
    • Granucci G.
    • Gruber M.
    • Gude A.
    • Guimarais L.
    • Guirlet R.
    • Gunn J.
    • Hacek P.
    • Hacquin S.
    • Hall S.
    • Ham C.
    • Happel T.
    • Harrison J.
    • Harting D.
    • Hauer V.
    • Havlícková E.
    • Hellsten T.
    • Helou W.
    • Henderson S.
    • Hennequin P.
    • Heyn M.
    • Hnat B.
    • Hölzl M.
    • Hogeweij D.
    • Honoré C.
    • Hopf C.
    • Horácek J.
    • Hornung G.
    • Horváth L.
    • Huang Z.
    • Huber Armin
    • Igitkhanov J.
    • Igochine V.
    • Imrisek M.
    • Innocente P.
    • Ionita-Schrittwieser C.
    • Isliker H.
    • Ivanova-Stanik I.
    • Jacobsen A. S.
    • Jacquet P.
    • Jakubowski M.
    • Jardin A.
    • Jaulmes F.
    • Jenko F.
    • Jensen T.
    • Jeppe Miki Busk O.
    • Jessen M.
    • Joffrin E.
    • Jones O.
    • Jonsson T.
    • Kallenbach A.
    • Kallinikos N.
    • Kálvin S.
    • Kappatou A.
    • Karhunen J.
    • Karpushov A.
    • Kasilov S.
    • Kasprowicz G.
    • Kendl A.
    • Kernbichler W.
    • Kim D.
    • Kirk A.
    • Kjer S.
    • Klimek I.
    • Kocsis G.
    • Kogut D.
    • Komm M.
    • Korsholm S. B.
    • Koslowski H. R.
    • Koubiti M.
    • Kovacic J.
    • Kovarik K.
    • Krawczyk N.
    • Krbec J.
    • Krieger K.
    • Krivska A.
    • Kube R.
    • Kudlacek O.
    • Kurki-Suonio T.
    • Labit B.
    • Laggner F. M.
    • Laguardia L.
    • Lahtinen A.
    • Lalousis P.
    • Lang P.
    • Lauber P.
    • Lazányi N.
    • Lazaros A.
    • Le H. B.
    • Lebschy A.
    • Leddy J.
    • Lefèvre Laure
    • Lehnen M.
    • Leipold F.
    • Lessig A.
    • Leyland M.
    • Liang Yan-Chun
    • Lipschultz B.
    • Liu Y. Q.
    • Loarer T.
    • Loarte A.
    • Loewenhoff T.
    • Lomanowski B.
    • Loschiavo V. P.
    • Lunt T.
    • Lupelli I.
    • Lux H.
    • Lyssoivan A.
    • Madsen J.
    • Maget P.
    • Maggi C.
    • Maggiora R.
    • Magnussen M. L.
    • Mailloux J.
    • Maljaars B.
    • Malygin A.
    • Mantica P.
    • Mantsinen M.
    • Maraschek M.
    • Marchand B.
    • Marconato N.
    • Marini C.
    • Marinucci M.
    • Markovic T.
    • Marocco D.
    • Marrelli L.
    • Martin Y.
    • Solis J. R. Martin
    • Martitsch A.
    • Mastrostefano S.
    • Mattei M.
    • Matthews G.
    • Mavridis M.
    • Mayoral M.-L.
    • Mazon D.
    • Mccarthy P.
    • Mcadams R.
    • Mcardle G.
    • Mcclements K.
    • Mcdermott R.
    • Mcmillan B.
    • Meisl G.
    • Merle A.
    • Meyer O.
    • Milanesio D.
    • Militello F.
    • Miron I. G.
    • Mitosinkova K.
    • Mlynar J.
    • Mlynek A.
    • Molina D.
    • Molina P.
    • Monakhov I.
    • Morales J.
    • Moreau D.
    • Morel Pierre
    • Moret J.-M.
    • Moro A.
    • Moulton D.
    • Müller H. W.
    • Nabais F.
    • Nardon E.
    • Naulin V.
    • Nemes-Czopf A.
    • Nespoli F.
    • Neu R.
    • Nielsen A. H.
    • Nielsen S. K.
    • Nikolaeva V.
    • Nimb S.
    • Nocente M.
    • Nouailletas R.
    • Nowak S.
    • Oberkofler M.
    • Oberparleiter M.
    • Ochoukov R.
    • Odstrcil T.
    • Olsen J.
    • Omotani J.
    • O'Mullane M. G.
    • Orain F.
    • Osterman N.
    • Paccagnella R.
    • Pamela S.
    • Pangione L.
    • Panjan M.
    • Papp G.
    • Paprok R.
    • Parail V.
    • Parra F. I.
    • Pau A.
    • Pautasso G.
    • Pehkonen S.-P.
    • Pereira A.
    • Perelli Cippo E.
    • Pericoli Ridolfini V.
    • Peterka M.
    • Petersson P.
    • Petrzilka V.
    • Piovesan P.
    • Piron C.
    • Pironti A.
    • Pisano F.
    • Pisokas T.
    • Pitts R.
    • Ploumistakis I.
    • Plyusnin V.
    • Pokol G.
    • Poljak D.
    • Pölöskei P.
    • Popovic Z.
    • Pór G.
    • Porte L.
    • Potzel S.
    • Predebon I.
    • Preynas M.
    • Primc G.
    • Pucella G.
    • Puiatti M. E.
    • Pütterich T.
    • Rack M.
    • Ramogida G.
    • Rapson C.
    • Rasmussen J. Juul
    • Rattá G. A.
    • Ratynskaia S.
    • Ravera G.
    • Réfy D.
    • Reich M.
    • Reimerdes H.
    • Reimold F.
    • Reinke M.
    • Reiser D.
    • Resnik M.
    • Reux C.
    • Ripamonti D.
    • Rittich D.
    • Riva G.
    • Rodriguez-Ramos M.
    • Rohde V.
    • Rosato J.
    • Ryter F.
    • Saarelma S.
    • Sabot R.
    • Saint-Laurent F.
    • Salewski M.
    • Salmi A.
    • Samaddar D.
    • Sanchis-Sanchez L.
    • Santos J.
    • Sauter O.
    • Scannell R.
    • Scheffer M.
    • Schneider M.
    • Schneider B.
    • Schneider P.
    • Schneller M.
    • Schrittwieser R.
    • Schubert M.
    • Schweinzer J.
    • Seidl J.
    • Sertoli M.
    • Sesnic S.
    • Shabbir A.
    • Shalpegin A.
    • Shanahan B.
    • Sharapov S.
    • Sheikh U.
    • Sias G.
    • Sieglin B.
    • Silva C.
    • Silva A.
    • Silva Fuglister M.
    • Simpson J.
    • Snicker A.
    • Sommariva C.
    • Sozzi C.
    • Spagnolo S.
    • Spizzo G.
    • Spolaore M.
    • Stange T.
    • Stejner Pedersen M.
    • Stepanov I.
    • Stober J.
    • Strand P.
    • Susnjara A.
    • Suttrop W.
    • Szepesi T.
    • Tál B.
    • Tala T.
    • Tamain P.
    • Tardini G.
    • Tardocchi M.
    • Teplukhina A.
    • Terranova D.
    • Testa D.
    • Theiler C.
    • Thornton A.
    • Tolias P.
    • Tophøj L.
    • Treutterer W.
    • Trevisan G. L.
    • Tripsky M.
    • Tsironis C.
    • Tsui C.
    • Tudisco O.
    • Uccello A.
    • Urban J.
    • Valisa M.
    • Vallejos P.
    • Valovic M.
    • van den Brand H.
    • Vanovac B.
    • Varoutis S.
    • Vartanian S.
    • Vega J.
    • Verdoolaege G.
    • Verhaegh K.
    • Vermare L.
    • Vianello N.
    • Vicente J.
    • Viezzer E.
    • Vignitchouk L.
    • Vijvers W. A. J.
    • Villone F.
    • Viola B.
    • Vlahos L.
    • Voitsekhovitch I.
    • Vondrácek P.
    • Vu N. M. T.
    • Wagner D.
    • Walkden N.
    • Wang N.
    • Wauters T.
    • Weiland M.
    • Weinzettl V.
    • Westerhof E.
    • Wiesenberger M.
    • Willensdorfer M.
    • Wischmeier M.
    • Wodniak I.
    • Wolfrum E.
    • Yadykin D.
    • Zagórski R.
    • Zammuto I.
    • Zanca P.
    • Zaplotnik R.
    • Zestanakis P.
    • Zhang Wei
    • Zoletnik S.
    • Zuin M.
    • Asdex Upgrade Team
    • Mast Team
    • Tcv Teams
    Nuclear Fusion, IOP Publishing, 2017, 57. Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement {{H}<SUB>\text{H</SUB> (10.1088/1741-4326/aa6084)
    DOI : 10.1088/1741-4326/aa6084
  • The I-mode confinement regime at ASDEX Upgrade: global properties and characterization of strongly intermittent density fluctuations
    • Happel T.
    • Manz P.
    • Ryter F.
    • Bernert M.
    • Dunne M.
    • Hennequin Pascale
    • Hetzenecker A.
    • Stroth U.
    • Conway G. D.
    • Guimarais L.
    • Honoré Cyrille
    • Viezzer E.
    Plasma Physics and Controlled Fusion, IOP Publishing, 2017, 59 (1), pp.014004. Properties of the I-mode confinement regime on the ASDEX Upgrade tokamak are summarized. A weak dependence of the power threshold for the L-I transition on the toroidal magnetic field strength is found. During improved confinement, the edge radial electric field well deepens. Stability calculations show that the I-mode pedestal is peeling-ballooning stable. Turbulence investigations reveal strongly intermittent density fluctuations linked to the weakly coherent mode in the confined plasma, which become stronger as the confinement quality increases. Across all investigated structure sizes ( ##IMG## [http://ej.iop.org/images/0741-3335/59/1/014004/ppcfaa3b87ieqn001.gif] k_\bot≈ 5 ?12?cm ?1 , with ##IMG## [http://ej.iop.org/images/0741-3335/59/1/014004/ppcfaa3b87ieqn002.gif] k_\bot the perpendicular wavenumber of turbulent density fluctuations), the intermittent turbulence bursts are observed. Comparison with bolometry data shows that they move poloidally toward the X-point and finally end up in the divertor. This might be indicative that they play a role in inhibiting the density profile growth, such that no pedestal is formed in the edge density profile. (10.1088/0741-3335/59/1/014004)
    DOI : 10.1088/0741-3335/59/1/014004
  • Multi-shell transport model for L-H transition
    • Berionni Vincent
    • Morel Pierre
    • Gürcan Özgür D.
    Physics of Plasmas, American Institute of Physics, 2017, 24 (12), pp.122310. A coupled model of transport, turbulence, and mesoscale flows is proposed, including turbulence spreading. The model consists of transport equations for plasma density and pressure coupled to a shell model of drift wave turbulence, which incorporates coupling to mesoscale flows via disparate scale interactions. The model can describe the turbulent cascade and its dynamical interplay with zonal and mean shear flows as well as the profile evolution (including the profiles of turbulence intensity itself) due to these self-consistent turbulent fluxes. This simple system of equations is shown to capture the low to high confinement (L-H) transition. It is also observed that as the heating is increased, the system goes through an intermediate phase that displays oscillations between zonal flows and turbulence. The transition towards the H mode, which is characterized by the presence of a strong mean shear flow at the edge, is triggered by the mesoscale dynamics due to the action of zonal flows, with turbulence spreading playing an important role in the H to L back transition. (10.1063/1.4998569)
    DOI : 10.1063/1.4998569
  • Controlled production of atomic oxygen and nitrogen in a pulsed radio-frequency atmospheric-pressure plasma
    • Dedrick J.
    • Schröter Sandra
    • Niemi K.
    • Wijaikhum A.
    • Wagenaars E.
    • Oliveira N De
    • Nahon L.
    • Booth Jean-Paul
    • O'Connell D.
    • Gans T.
    Journal of Physics D: Applied Physics, IOP Publishing, 2017, 50 (45), pp.455204. Radio-frequency driven atmospheric pressure plasmas are efficient sources for the production of reactive species at ambient pressure and close to room temperature. Pulsing the radio-frequency power input provides additional control over species production and gas temperature. Here, we demonstrate the controlled production of highly reactive atomic oxygen and nitrogen in a pulsed radio-frequency ( ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn001.gif] 13.56 MHz) atmospheric-pressure plasma, operated with a small ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn002.gif] 0.1 % air-like admixture ( ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn003.gif] \rm N_2 / ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn004.gif] \rm O_2 at ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn005.gif] 4:1 ) through variations in the duty cycle. Absolute densities of atomic oxygen and nitrogen are determined through vacuum-ultraviolet absorption spectroscopy using the DESIRS beamline at the SOLEIL synchrotron coupled with a high resolution Fourier-transform spectrometer. The neutral-gas temperature is measured using nitrogen molecular optical emission spectroscopy. For a fixed applied-voltage amplitude (234?V), varying the pulse duty cycle from 10% to 100% at a fixed 10?kHz pulse frequency enables us to regulate the densities of atomic oxygen and nitrogen over the ranges of ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn006.gif] (0.18±0.03) ? ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn007.gif] (3.7±0.1)× 10^20 ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn008.gif] \rm m^-3 and ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn009.gif] (0.2±0.06) ? ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn010.gif] (4.4±0.8) × 10^19 ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn011.gif] \rm m^-3 , respectively. The corresponding 11?K increase in the neutral-gas temperature with increased duty cycle, up to a maximum of ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn012.gif] (314±4) K, is relatively small. This additional degree of control, achieved through regulation of the pulse duty cycle and time-averaged power, could be of particular interest for prospective biomedical applications. (10.1088/1361-6463/aa8da2)
    DOI : 10.1088/1361-6463/aa8da2
  • A model for tailored-waveform radiofrequency sheaths
    • Chabert Pascal
    • Turner Miles
    Journal of Physics D: Applied Physics, IOP Publishing, 2017, 50 (23), pp.23LT02. The sheath physics of radiofrequency plasmas excited by a sinusoidal waveform is reasonably well understood, but the existing models are complicated and are not easily extended to the more complex waveforms recently introduced in applications. Turner and Chabert (2014 Appl. Phys. Lett . 104 164102) proposed a model for collisionless sheaths that can easily be solved for arbitrary waveforms. In this paper we extend this model to the case of collisional sheaths in the intermediate pressure regime. Analytical expressions are derived for the electric field, the electric potential and the density profiles in the sheath region. The collisionless and collisional models are compared for a pulsed-voltage waveform. (10.1088/1361-6463/aa6e42)
    DOI : 10.1088/1361-6463/aa6e42
  • Concepts, Capabilities, and Limitations of Global Models: A Review
    • Hurlbatt Andrew
    • Gibson Andrew
    • Schröter Sandra
    • Bredin Jérôme
    • Foote Alexander Paul Stuart
    • Grondein Pascaline
    • O'Connell D.
    • Gans T.
    Plasma Processes and Polymers, Wiley-VCH Verlag, 2017, 14 (1-2), pp.1600138. For researchers wishing to generate an understanding of complex plasma systems, global models often present an attractive first step, mainly due to their ease of development and use. These volume averaged models are able to give descriptions of plasmas with complex chemical kinetics, and without the computationally intensive numerical methods required for spatially resolved models. This paper gives a tutorial on global modeling, including development and techniques, and provides a discussion on the issues and pitfalls that researchers should be aware of. Further discussion is provided in the form of two reviews on methods of extending global modeling techniques to encompass variations in either time or space. (10.1002/ppap.201600138)
    DOI : 10.1002/ppap.201600138
  • Transient propagation dynamics of flowing plasmas accelerated by radio-frequency electric fields
    • Dedrick J.
    • Gibson Andrew
    • Rafalskyi D.V.
    • Aanesland Ane
    Physics of Plasmas, American Institute of Physics, 2017, 24, pp.050703. Flowing plasmas are of significant interest due to their role in astrophysical phenomena and potential applications in magnetic-confined fusion and spacecraft propulsion. The acceleration of a charge-neutral plasma beam using the radio-frequency self-bias concept could be particularly useful for the development of neutralizer-free propulsion sources. However, the mechanisms that lead to space-charge compensation of the exhaust beam are unclear. Here, we spatially and temporally resolve the propagation of electrons in an accelerated plasma beam that is generated using the self-bias concept with phase-resolved optical emission spectroscopy. When combined with measurements of the extraction-grid voltage, ion and electron currents, and plasma potential, the pulsed-periodic propagation of electrons during the interval of sheath collapse at the grids is found to enable the compensation of space charge. (10.1063/1.4983059)
    DOI : 10.1063/1.4983059
  • Nanosecond surface dielectric barrier discharge in atmospheric pressure air: I. measurements and 2D modeling of morphology, propagation and hydrodynamic perturbations
    • Zhu Yifei
    • Shcherbanev S.A.
    • Baron B.
    • Starikovskaia Svetlana
    Plasma Sources Science and Technology, IOP Publishing, 2017, 26 (12), pp.125004. A parallel 2D code for modeling nanosecond surface dielectric barrier discharge (nSDBD), combining a discharge description, detailed kinetics and hydrodynamics, is developed and validated. A series of experiments and numerical modeling for a single pulse nSDBD in atmospheric pressure air at a voltage amplitude of 24 kV have been performed. The measured and calculated velocity of the discharge front, electrical current, 2D map of N2 (\rmC^3\rmΠ _u)\to \rmN_2(\rmB^3\rmΠ _g) emission and hydrodynamic perturbations caused by the discharge on the time scale 0.2−5 &#956;s are compared. The data are presented and analyzed for the negative and positive polarity of the streamers. A set of parametric calculations with different dielectric permittivities and different dielectric thicknesses is presented. (10.1088/1361-6595/aa9304)
    DOI : 10.1088/1361-6595/aa9304
  • Examining Coherency Scales, Substructure, and Propagation of Whistler Mode Chorus Elements With Magnetospheric Multiscale (MMS)
    • Turner D. L.
    • Lee J. H.
    • Claudepierre S. G.
    • Fennell J. F.
    • Blake J. B.
    • Jaynes A. N.
    • Leonard T.
    • Wilder F. D.
    • Ergun R. E.
    • Baker D. N.
    • Cohen I. J.
    • Mauk B. H.
    • Strangeway R. J.
    • Hartley D. P.
    • Kletzing C. A.
    • Breuillard Hugo
    • Le Contel Olivier
    • Khotyaintsev Y. V.
    • Torbert R. B.
    • Allen R. C.
    • Burch J. L.
    • Santolík O.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2017, 122 (11), pp.201-226. Whistler mode chorus waves are a naturally occurring electromagnetic emission observed in Earth's magnetosphere. Here, for the first time, data from NASA's Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, fi>k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA's Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L shells (5.5 < L < 8.5), magnetic local time (06:00 < MLT < 09:00), and magnetic latitude (-32° < MLAT < -15°), implying a large chorus active region. Eight chorus elements and their substructure were analyzed in detail with MMS. These chorus elements were all lower band and rising tone emissions, right-handed and nearly circularly polarized, and propagating away from the magnetic equator when they were observed at MMS (MLAT -31°). Most of the elements had "hook"-like signatures on their wave power spectra, characterized by enhanced wave power at flat or falling frequency following the peak, and all the elements exhibited complex and well-organized substructure observed consistently at all four MMS spacecraft at separations up to 70 km (60 km perpendicular and 38 km parallel to the background magnetic field). The waveforms in field-aligned coordinates also demonstrated that these waves were all phase coherent, allowing for the direct calculation of fi>k. Error estimates on calculated fi>k revealed that the plane wave approximation was valid for six of the eight elements and most of the subelements. The wave normal vectors were within 20-30° from the direction antiparallel to the background field for all elements and changed from subelement to subelement through at least two of the eight elements. The azimuthal angle of fi>k in the perpendicular plane was oriented earthward and was oblique to that of the Poynting vector, which has implications for the validity of cold plasma theory. (10.1002/2017JA024474)
    DOI : 10.1002/2017JA024474
  • MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Sub-Alfvénic Flow
    • Farrugia C. J.
    • Lugaz N.
    • Alm L.
    • Vasquez B.
    • Argall M. R.
    • Kucharek H.
    • Matsui H.
    • Torbert R. B.
    • Lavraud B.
    • Le Contel Olivier
    • Cohen I. J.
    • Burch J. L.
    • Russell C. T.
    • Strangeway R. J.
    • Shuster J.
    • Dorelli J. C.
    • Eastwood Jonathan P.
    • Ergun R. E.
    • Fuselier S. A.
    • Gershman D. J.
    • Giles B. L.
    • Khotyaintsev Y. V.
    • Lindqvist P. A.
    • Marklund G. T.
    • Paulson K. W.
    • Petrinec S. M.
    • Phan T. D.
    • Pollock C. J.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2017, 122 (10), pp.9934-9951. We present MMS observations during two dayside magnetopause crossings under hitherto unexamined conditions: (i) when the bow shock is weakening and the solar wind transitioning to sub-Alfvénic flow and (ii) when it is reforming. Interplanetary conditions consist of a magnetic cloud with (i) a strong B (20 nT) pointing south and (ii) a density profile with episodic decreases to values of 0.3 cm<SUP>-3</SUP> followed by moderate recovery. During the crossings the magnetosheath magnetic field is stronger than the magnetosphere field by a factor of 2.2. As a result, during the outbound crossing through the ion diffusion region, MMS observed an inversion of the relative positions of the X and stagnation (S) lines from that typically the case: the S line was closer to the magnetosheath side. The S line appears in the form of a slow expansion fan near which most of the energy dissipation is taking place. While in the magnetosphere between the crossings, MMS observed strong field and flow perturbations, which we argue to be due to kinetic Alfvén waves. During the reconnection interval, whistler mode waves generated by an electron temperature anisotropy (T<SUB>e&#8869;</SUB>>T<SUB>e||</SUB>) were observed. Another aim of the paper is to distinguish bow shock-induced field and flow perturbations from reconnection-related signatures. The high-resolution MMS data together with 2-D hybrid simulations of bow shock dynamics helped us to distinguish between the two sources. We show examples of bow shock-related effects (such as heating) and reconnection effects such as accelerated flows satisfying the Walén relation. (10.1002/2017JA024563)
    DOI : 10.1002/2017JA024563
  • Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence
    • Hadid Lina
    • Sahraoui Fouad
    • Galtier Sébastien
    The Astrophysical Journal, American Astronomical Society, 2017, 838 (1), pp.9. Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS/ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energy cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models. (10.3847/1538-4357/aa603f)
    DOI : 10.3847/1538-4357/aa603f
  • Evidence for Quasi-adiabatic Motion of Charged Particles in Strong Current Sheets in the Solar Wind
    • Malova H. V.
    • Popov V. Y.
    • Grigorenko E. E.
    • Petrukovich A. A.
    • Delcourt Dominique C.
    • Sharma A. S.
    • Khabarova O. V.
    • Zelenyi L. M.
    The Astrophysical Journal, American Astronomical Society, 2017, 834, pp.34. We investigate quasi-adiabatic dynamics of charged particles in strong current sheets (SCSs) in the solar wind, including the heliospheric current sheet (HCS), both theoretically and observationally. A self-consistent hybrid model of an SCS is developed in which ion dynamics is described at the quasi-adiabatic approximation, while the electrons are assumed to be magnetized, and their motion is described in the guiding center approximation. The model shows that the SCS profile is determined by the relative contribution of two currents: (i) the current supported by demagnetized protons that move along open quasi-adiabatic orbits, and (ii) the electron drift current. The simplest modeled SCS is found to be a multi-layered structure that consists of a thin current sheet embedded into a much thicker analog of a plasma sheet. This result is in good agreement with observations of SCSs at 1 au. The analysis of fine structure of different SCSs, including the HCS, shows that an SCS represents a narrow current layer (with a thickness of 10<SUP>4</SUP> km) embedded into a wider region of about 10<SUP>5</SUP> km, independently of the SCS origin. Therefore, multi-scale structuring is very likely an intrinsic feature of SCSs in the solar wind. (10.3847/1538-4357/834/1/34)
    DOI : 10.3847/1538-4357/834/1/34
  • Lower Hybrid Drift Waves and Electromagnetic Electron Space-Phase Holes Associated With Dipolarization Fronts and Field-Aligned Currents Observed by the Magnetospheric Multiscale Mission During a Substorm
    • Le Contel Olivier
    • Nakamura R.
    • Breuillard Hugo
    • Argall M. R.
    • Graham D. B.
    • Fischer D.
    • Retinò Alessandro
    • Berthomier Matthieu
    • Pottelette Raymond
    • Mirioni Laurent
    • Chust Thomas
    • Wilder F. D.
    • Gershman D. J.
    • Varsani A.
    • Lindqvist P.-A.
    • Khotyaintsev Y. V.
    • Norgren C.
    • Ergun R. E.
    • Goodrich K. A.
    • Burch J. L.
    • Torbert R. B.
    • Needell J.
    • Chutter M.
    • Rau D.
    • Dors I.
    • Russell C. T.
    • Magnes W.
    • Strangeway R. J.
    • Bromund K. R.
    • Wei H. Y.
    • Plaschke F.
    • Anderson B. J.
    • Le G.
    • Moore T. E.
    • Giles B. L.
    • Paterson W. R.
    • Pollock C. J.
    • Dorelli J. C.
    • Avanov L. A.
    • Saito Y.
    • Lavraud B.
    • Fuselier S. A.
    • Mauk B. H.
    • Cohen I. J.
    • Turner D. L.
    • Fennell J. F.
    • Leonard T.
    • Jaynes A. N.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2017, 122 (12), pp.236-257. We analyze two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on 10 August 2016. The first event corresponds to a fast dawnward flow with an antiparallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing and with a smaller lower hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet we cannot rule out the possibility that the drift waves are produced by the antiparallel current associated with the fast flows, leaving the source for the electron holes unexplained. (10.1002/2017JA024550)
    DOI : 10.1002/2017JA024550
  • A statistical study of kinetic-size magnetic holes in turbulent magnetosheath: MMS observations
    • Huang S. Y.
    • Du J. W.
    • Sahraoui Fouad
    • Yuan Z. G.
    • He J. S.
    • Zhao J. S.
    • Le Contel Olivier
    • Breuillard Hugo
    • Wang D. D.
    • Yu X. D.
    • Deng X. H.
    • Fu H.S.
    • Zhou M.
    • Pollock C. J.
    • Torbert R. B.
    • Russell C. T.
    • Burch J. L.
    Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2017, 122 (8), pp.8577-8588. Kinetic-size magnetic holes (KSMHs) in the turbulent magnetosheath are statistically investigated using high time resolution data from the MMS mission. The KSMHs with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside KSMHs. Electron fluxes at ~ 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed KSMHs seem to be best explained as electron vortex magnetic holes. It is furthermore shown that KSMHs are likely to heat and accelerate the electrons. (10.1002/2017JA024415)
    DOI : 10.1002/2017JA024415
  • Contribution à l'étude de la scintillation ionosphérique équatoriale sur la crête sud de l'Afrique
    • Kahindo Bruno
    • Kazadi Mukenga Bantu Albert
    • Fleury Rolland
    • Tondozi Keto Franck
    • Zana Ndontoni André
    • Kakule Kaniki Marc
    • Amory-Mazaudier Christine
    • Groves K.
    Journal des sciences, Université Cheikh Anta Diop, 2017, 17 (2), pp.27-47. Cet article présente une étude sur la scintillation ionosphérique associée aux irrégularités équatoriales sur la crête sud de l'anomalie équatoriale. Les données utilisées sont le contenu électronique total (TEC) et l'indice de scintillation d'amplitude S4 enregistrées par le GPS SCINDA de Kinshasa (République Démocratique du Congo). Du fait de cette position géographique bien particulière, ces mesures constituent une opportunité de caractériser l'ionosphère sensible à de nombreux phénomènes spécifiques (forts gradients d'ionisation, scintillation, …). Le travail couvre la période qui va de mai 2011 à octobre 2012 situé dans la phase ascendante du cycle solaire numéro 24. Les résultats montrent que la scintillation est très intense avec des valeurs S4 voisines de 1 et au-delà pendant de nombreux jours de l'année. La répartition temporelle montre que les fortes valeurs de l'indice sont observées entre 19h à 23h TL (Temps Local). Ce résultat confirme que la scintillation est un phénomène présent dès le coucher du Soleil et peut se prolonger sur les quelques heures après minuit. On a aussi observé un fort effet saisonnier qui s'est manifesté par des valeurs intenses de scintillation aux mois d'équinoxe comparés aux périodes de solstice. Afin de mieux caractériser le degré d'ionisation dans la région équatoriale sud, nous avons utilisé les mesures GPS (pseudo-distances, bi-fréquences) effectuées par la station NKLG à Libreville au Gabon. C'est la seule station dans cette partie de l'Afrique qui possède une série historique de mesures sous forme de fichiers Rinex journaliers. Elle est rattachée au réseau IGS, ce qui garantit un suivi opérationnel très sérieux. Nous avons exploité ces mesures pour calculer le VTEC (Contenu Total Electronique vertical) et suivre le comportement de l'ionisation pendant la période de nos mesures. Le VTEC montre une variation diurne fonction de l'angle solaire zénithal (rayonnement solaire) et du rayonnement solaire ionisant. Ce dernier est quantifié par le nombre glissant de taches solaires (R12) permettant de situer notre période de mesures dans le cycle solaire en cours. Le VTEC est compris entre quelques unités d'unités de TEC (1 TECU=1016 el/m2) la nuit et 80-100 tecu de jour. Le maximum diurne est observé aux environs de 15 TL.
  • Simultaneous Diagnostic of Temperature Distribution and Electric Field induced in Dielectric Target by Atmospheric Pressure Plasma Jet
    • Slikboer Elmar
    • Garcia-Caurel Enric
    • Sobota Ana
    • Guaitella Olivier
    , 2017, 62.
  • Vibrational excitation and temperature evolution in a pulsed CO<SUB>2</SUB> discharge
    • Guaitella Olivier
    • Morillo-Candas Ana-Sofia
    • Yap David
    • Drag Cyril
    • Booth Jean-Paul
    • Klarenaar Bart
    • Engeln Richard
    • Grofulovic Marija
    • Silva Tiago
    • Guerra V.
    , 2017, 62.
  • The 2017 Plasma Roadmap: Low temperature plasma science and technology
    • Adamovich I.
    • Baalrud S D
    • Bogaerts A.
    • Bruggeman P J
    • Cappelli M.
    • Colombo V.
    • Czarnetzki U.
    • Ebert U.
    • Eden J G
    • Favia P.
    • Graves D B
    • Hamaguchi S.
    • Hieftje G.
    • Hori M.
    • Kaganovich I D
    • Kortshagen U.
    • Kushner M.J.
    • Mason N J
    • Mazouffre S.
    • Mededovic Thagard S.
    • Metelmann H-R
    • Mizuno A.
    • Moreau Éric
    • Murphy a B
    • Niemira B A
    • Oehrlein G S
    • Petrovic Z Lj
    • Pitchford L C
    • Pu Y-K
    • Rauf S.
    • Sakai O.
    • Samukawa S.
    • Starikovskaia Svetlana
    • Tennyson J.
    • Terashima K.
    • Turner M.M.
    • Sanden M C M van De
    • Vardelle A.
    Journal of Physics D: Applied Physics, IOP Publishing, 2017, 50 (32), pp.323001 (46 p.). Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges. (10.1088/1361-6463/aa76f5)
    DOI : 10.1088/1361-6463/aa76f5
  • Stable and unstable roots of ion temperature gradient driven mode using curvature modified plasma dispersion functions
    • Gultekin Ozgur
    • Gürcan Özgür D.
    Plasma Physics and Controlled Fusion, IOP Publishing, 2017, 60 (2), pp.025021. Basic, local kinetic theory of ion temperature gradient driven (ITG) mode, with adiabatic electrons is reconsidered. Standard unstable, purely oscillating as well as damped solutions of the local dispersion relation are obtained using a bracketing technique that uses the argument principle. This method requires computing the plasma dielectric function and its derivatives, which are implemented here using modified plasma dispersion functions with curvature and their derivatives, and allows bracketing/following the zeros of the plasma dielectric function which corresponds to different roots of the ITG dispersion relation. We provide an open source implementation of the derivatives of modified plasma dispersion functions with curvature, which are used in this formulation. Studying the local ITG dispersion, we find that near the threshold of instability the unstable branch is rather asymmetric with oscillating solutions towards lower wave numbers (i.e. drift waves), and damped solutions toward higher wave numbers. This suggests a process akin to inverse cascade by coupling to the oscillating branch towards lower wave numbers may play a role in the nonlinear evolution of the ITG, near the instability threshold. Also, using the algorithm, the linear wave diffusion is estimated for the marginally stable ITG mode. (10.1088/1361-6587/aa9e27)
    DOI : 10.1088/1361-6587/aa9e27
  • Intrinsic non-inductive current driven by ETG turbulence in tokamaks
    • Kaw P. K.
    • Singh R.
    • Gürcan Özgür D.
    Physics of Plasmas, American Institute of Physics, 2017, 24, pp.102303. Motivated by observations and physics understanding of the phenomenon of intrinsic rotation, it is suggested that similar considerations for electron dynamics may result in intrinsic current in tokamaks. We have investigated the possibility of intrinsic non-inductive current in the turbulent plasma of tokamaks. Ohm's law is generalized to include the effect of turbulent fluctuations in the mean field approach. This clearly leads to the identification of sources and the mechanisms of non-inductive current drive by electron temperature gradient turbulence. It is found that a mean parallel electro-motive force and hence a mean parallel current can be generated by (1) the divergence of residual current flux density and (2) a non-flux like turbulent source from the density and parallel electric field correlations. Both residual flux and the non-flux source require parallel wave-number k&#8741; symmetry breaking for their survival which can be supplied by various means like mean E&#8201;×&#8201;B shear, turbulence intensity gradient, etc. Estimates of turbulence driven current are compared with the background bootstrap current in the pedestal region. It is found that turbulence driven current is nearly 10% of the bootstrap current and hence can have a significant influence on the equilibrium current density profiles and current shear driven modes. (10.1063/1.4990746)
    DOI : 10.1063/1.4990746
  • Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: vibrational kinetics and negative ions control
    • Diomede P.
    • Bruneau Bastien
    • Longo S.
    • Johnson E.V.
    • Booth Jean-Paul
    Plasma Sources Science and Technology, IOP Publishing, 2017, 26 (7), pp.075007. A comprehensive hybrid model of a hydrogen capacitively coupled plasma, including a detailed description of the molecular vibrational kinetics, has been applied to the study of the effect of tailored voltage waveforms (TVWs) on the production kinetics and transport of negative ions in these discharges. Two kinds of TVWs are considered, valleys-to-peaks and saw-tooth, with amplitude and slope asymmetry respectively. By tailoring the voltage waveform only, it is possible to exert substantial control over the peak density and position of negative ions inside the discharge volume. This control is particularly effective for saw-tooth waveforms. Insight into the mechanisms allowing this control is provided by an analysis of the model results. This reveals the roles of the vibrational distribution function and of the electron energy distribution and their correlations, as well as changes in the negative ion transport in the electric field when using different TVWs. Considering the chemical reactivity of H ? ions, the possibility of a purely electrical control of the negative ion cloud in a reactor operating with a feedstock gas diluted by hydrogen may find interesting applications. This is the first study of vibrational kinetics in the context of TVWs in molecular gases. (10.1088/1361-6595/aa752c)
    DOI : 10.1088/1361-6595/aa752c
  • QDB: a new database of plasma chemistries and reactions
    • Tennyson Jonathan
    • Rahimi Sara
    • Hill Christian
    • Tse Lisa
    • Vibhakar Anuradha
    • Akello-Egwel Dolica
    • Brown Daniel B
    • Dzarasova Anna
    • Hamilton James R
    • Jaksch Dagmar
    • Mohr Sebastian
    • Wren-Little Keir
    • Bruckmeier Johannes
    • Agarwal Ankur
    • Bartschat Klaus
    • Annemie Bogaerts Annemie
    • Booth Jean-Paul
    • Goeckner Matthew J
    • Hassouni Khaled
    • Itikawa Yukikazu
    • Braams Bastiaan J
    • Krishnakumar E.
    • Laricchiuta Annarita
    • Mason Nigel J
    • Pandey Sumeet
    • Petrovic Zoran Lj
    • Pu Yi-Kang
    • Ranjan Alok
    • Rauf S.
    • Schulze J.
    • Turner M.M.
    • Ventzek Peter
    • Whitehead J.C.
    • Yoon Jung-Sik
    Plasma Sources Science and Technology, IOP Publishing, 2017, 26 (5), pp.055014. One of the most challenging and recurring problems when modeling plasmas is the lack of data on the key atomic and molecular reactions that drive plasma processes. Even when there are data for some reactions, complete and validated datasets of chemistries are rarely available. This hinders research on plasma processes and curbs development of industrial applications. The QDB project aims to address this problem by providing a platform for provision, exchange, and validation of chemistry datasets. A new data model developed for QDB is presented. QDB collates published data on both electron scattering and heavy-particle reactions. These data are formed into reaction sets, which are then validated against experimental data where possible. This process produces both complete chemistry sets and identifies key reactions that are currently unreported in the literature. Gaps in the datasets can be filled using established theoretical methods. Initial validated chemistry sets for SF 6 /CF 4 /O 2 and SF 6 /CF 4 /N 2 /H 2 are presented as examples. (10.1088/1361-6595/aa6669)
    DOI : 10.1088/1361-6595/aa6669
  • Experimental study of the interaction of two laser-driven radiative shocks at the PALS laser
    • Singh R. L.
    • Stehlé C.
    • Suzuki-Vidal F.
    • Kozlova M.
    • Larour Jean
    • Chaulagain U.
    • Clayson T.
    • Rodriguez R.
    • Gil M.
    • Nejdl J.
    • Krus M.
    • Dostal J.
    • Dudzak R.
    • Barroso P.
    • Acef O.
    • Cotelo M.
    • Velarde P.
    High Energy Density Physics, Elsevier, 2017, 23, pp.20 - 30. Radiative shocks (RS) are complex phenomena which are ubiquitous in astrophysical environments. The study of such hypersonic shocks in the laboratory, under controlled conditions, is of primary interest to understand the physics at play and also to check the ability of numerical simulations to reproduce the experimental results. In this context, we conducted, at the Prague Asterix Laser System facility (PALS), the first experiments dedicated to the study of two counter-propagating radiative shocks propagating at non-equal speeds up to 25–50 km/s in noble gases at pressures ranging between 0.1 and 0.6 bar. These experiments highlighted the interaction between the two radiative precursors. This interaction is qualitatively but not quantitatively described by 1D simulations. Preliminary results obtained with XUV spectroscopy leading to the estimation of shock temperature and ion charge of the plasma are also presented. (10.1016/j.hedp.2017.03.001)
    DOI : 10.1016/j.hedp.2017.03.001
  • Interplay between Alfvén and magnetosonic waves in compressible magnetohydrodynamics turbulence
    • Andrés Nahuel
    • Leoni P. Clark Di
    • Mininni P. D.
    • Dmitruk P.
    • Sahraoui Fouad
    • Matthaeus W. H.
    Physics of Plasmas, American Institute of Physics, 2017, 24, pp.102314. Using spatio-temporal spectra, we show direct evidence of excitation of magnetosonic and Alfvén waves in three-dimensional compressible magnetohydrodynamic turbulence at small Mach numbers. For the plasma pressure dominated regime, or the high beta regime (with beta the ratio between fluid and magnetic pressure), and for the magnetic pressure dominated regime, or the low beta regime, we study magnetic field fluctuations parallel and perpendicular to a guide magnetic field B<SUB>0</SUB>. In the low beta case, we find excitation of compressible and incompressible fluctuations, with a transfer of energy towards Alfvénic modes and to a lesser extent towards magnetosonic modes. In particular, we find signatures of the presence of fast magnetosonic waves in a scenario compatible with that of weak turbulence. In the high beta case, fast and slow magnetosonic waves are present, with no clear trace of Alfvén waves, and a significant part of the energy is carried by two-dimensional turbulent eddies. (10.1063/1.4997990)
    DOI : 10.1063/1.4997990